Photonic and Nanomechanical Modes in Acoustoplasmonic Toroidal Nanopropellers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Optical Characteristics
3.2. Acoustic Characteristics
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
COE | chiro-optical effect |
FDTD | Finite-Difference Time Domain |
FEM | Finite-Element Method |
LCP | left-circular polarization |
PML | perfectly matching layer |
RCP | right-circular polarization |
TnP | toroidal nanopropeller |
Appendix A. Length of the Helix
Appendix B. Displacement Profiles
References
- Priya; Cardozo de Oliveira, E.R.; Lanzillotti-Kimura, N.D. Perspectives on high-frequency nanomechanics, nanoacoustics, and nanophononics. Appl. Phys. Lett. 2023, 122, 140501. [Google Scholar] [CrossRef]
- Aspelmeyer, M.; Kippenberg, T.J.; Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 2014, 86, 1391–1452. [Google Scholar] [CrossRef]
- Delsing, P.; Cleland, A.N.; Schuetz, M.J.A.; Knörzer, J.; Giedke, G.; Cirac, J.I.; Srinivasan, K.; Wu, M.; Balram, K.C.; Bäuerle, C.; et al. The 2019 surface acoustic waves roadmap. J. Phys. D Appl. Phys. 2019, 52, 353001. [Google Scholar] [CrossRef]
- Liu, N.; Langguth, L.; Weiss, T.; Kästel, J.; Fleischhauer, M.; Pfau, T.; Giessen, H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 2009, 8, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Lanzillotti-Kimura, N.D.; O’Brien, K.P.; Rho, J.; Suchowski, H.; Yin, X.; Zhang, X. Polarization-controlled coherent phonon generation in acoustoplasmonic metasurfaces. Phys. Rev. B 2018, 97, 235403. [Google Scholar] [CrossRef]
- Boggiano, H.D.; Nan, L.; Grinblat, G.; Maier, S.A.; Cortés, E.; Bragas, A.V. Focusing Surface Acoustic Waves with a Plasmonic Hypersonic Lens. Nano Lett. 2024, 24, 6362–6368. [Google Scholar] [CrossRef] [PubMed]
- Esmann, M.; Lamberti, F.R.; Harouri, A.; Lanco, L.; Sagnes, I.; Favero, I.; Aubin, G.; Gomez-Carbonell, C.; Lemaître, A.; Krebs, O.; et al. Brillouin scattering in hybrid optophononic Bragg micropillar resonators at 300 GHz. Optica 2019, 6, 854–859. [Google Scholar] [CrossRef]
- Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D.A.; Bartal, G.; Zhang, X. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008, 455, 376–379. [Google Scholar] [CrossRef]
- Rossino, G.; Robescu, M.; Licastro, E.; Tedesco, C.; Martello, I.; Maffei, L.; Vincenti, G.; Bavaro, T.; Collina, S. Biocatalysis: A smart and green tool for the preparation of chiral drugs. Chirality 2022, 34, 1403–1418. [Google Scholar] [CrossRef]
- Barron, L.D. Molecular Light Scattering and Optical Activity, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Schäferling, M.; Yin, X.; Engheta, N.; Giessen, H. Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources. ACS Photonics 2012, 1, 530–537. [Google Scholar] [CrossRef]
- Zheng, G.; He, J.; Kumar, V.; Wang, S.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M.; Wong, K.Y. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 2021, 50, 3738–3754. [Google Scholar] [CrossRef]
- Ni, B.; Mychinko, M.; Gómez-Graña, S.; Morales-Vidal, J.; Obelleiro-Liz, M.; Heyvaert, W.; Vila-Liarte, D.; Zhuo, X.; Albrecht, W.; Zheng, G.; et al. Chiral Seeded Growth of Gold Nanorods Into Fourfold Twisted Nanoparticles with Plasmonic Optical Activity. Adv. Mater. 2023, 35, 2208299. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.Y.; Chen, S.; Han, Y.; Liu, X.; Liu, J.; Li, J.; Yao, Y. Artificial Propeller Chirality and Counterintuitive Reversal of Circular Dichroism in Twisted Meta-molecules. Nano Lett. 2021, 21, 6828–6834. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Tasco, V.; Todisco, F.; Cuscunà, M.; Benedetti, A.; Sanvitto, D.; Passaseo, A. Triple-helical nanowires by tomographic rotatory growth for chiral photonics. Nat. Commun. 2015, 6, 6484. [Google Scholar] [CrossRef]
- Radke, A.; Gissibl, T.; Klotzbücher, T.; Braun, P.V.; Giessen, H. Three-Dimensional Bichiral Plasmonic Crystals Fabricated by Direct Laser Writing and Electroless Silver Plating. Adv. Mater. 2011, 23, 3018–3021. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Wang, F.; Sun, J.; Wang, X.; Tang, Z. Recent Advances in Ultrathin Chiral Metasurfaces by Twisted Stacking. Adv. Mater. 2023, 35, 2206141. [Google Scholar] [CrossRef] [PubMed]
- de Larrinzar, B.C.L.; Xiang, C.; de Oliveira, E.R.C.; Lanzillotti-Kimura, N.D.; Garcia-Martin, A. Towards chiral acoustoplasmonics. Nanophotonics 2023, 12, 1957–1964. [Google Scholar] [CrossRef]
- de Larrinzar, B.C.L.; Lanzillotti-Kimura, N.D.; García-Martín, A. Interaction effects in chiral acoustoplasmonic nanostructures. In Proceedings of the Nanophotonics X. International Society for Optics and Photonics; SPIE Photonics Europe, 2024; SPIE: Strasbourg, France, 2024; Volume 12991, p. 129910B. [Google Scholar]
- Bragas, A.V.; Maier, S.A.; Boggiano, H.D.; Grinblat, G.; Berté, R.; de S. Menezes, L.; Cortés, E. Nanomechanics with plasmonic nanoantennas: Ultrafast and local exchange between electromagnetic and mechanical energy. J. Opt. Soc. Am. B 2023, 40, 1196–1211. [Google Scholar] [CrossRef]
- Lanzillotti-Kimura, N.D.; Fainstein, A.; Jusserand, B.; Lemaître, A. Resonant Raman scattering of nanocavity-confined acoustic phonons. Phys. Rev. B 2009, 79, 035404. [Google Scholar] [CrossRef]
- Lanzillotti-Kimura, N.D.; Fainstein, A.; Perrin, B.; Jusserand, B.; Largeau, L.; Mauguin, O.; Lemaitre, A. Enhanced optical generation and detection of acoustic nanowaves in microcavities. Phys. Rev. B 2011, 83, 201103. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Aigouy, L.; González, M.U.; Lin, H.J.; Schoenauer-Sebag, M.; Billot, L.; Gredin, P.; Mortier, M.; Chen, Z.; García-Martín, A. Mapping plasmon-enhanced upconversion fluorescence of Er/Yb-doped nanocrystals near gold nanodisks. Nanoscale 2019, 11, 10365–10371. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.J.; Xiang, H.; Xin, C.; Hu, Z.; Billot, L.; Gredin, P.; Mortier, M.; Chen, Z.; González, M.U.; García-Martín, A.; et al. Direct imaging of fluorescence enhancement in the gap between two gold nanodisks. Appl. Phys. Lett. 2021, 118, 161105. [Google Scholar] [CrossRef]
- Jacak, W.A. Size-dependence of the Lorentz friction for surface plasmons in metallic nanospheres. Opt. Express 2015, 23, 4472–4481. [Google Scholar] [CrossRef] [PubMed]
- Jacak, W.A. Quantum Nano-Plasmonics; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- de Dios, C.; Jiménez, A.; Garcia, F.; García-Martín, A.; Cebollada, A.; Armelles, G. Mueller matrix study of the dichroism in nanorods dimers: Rod separation effects. Opt. Express 2019, 27, 21142. [Google Scholar] [CrossRef] [PubMed]
- Fainstein, A.; Lanzillotti-Kimura, N.D.; Jusserand, B.; Perrin, B. Strong Optical-Mechanical Coupling in a Vertical GaAs/AlAs Microcavity for Subterahertz Phonons and Near-Infrared Light. Phys. Rev. Lett. 2013, 110, 03743. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, O.; Priya, P.; Rodriguez, A.; Lemaitre, A.; Esmann, M.; Lanzillotti-Kimura, N.D. Topological optical and phononic interface mode by simultaneous band inversion. Optica 2021, 8, 598–605. [Google Scholar] [CrossRef]
- Della Picca, F.; Berte, R.; Rahmani, M.; Albella, P.; Bujjamer, J.M.; Poblet, M.; Cortés, E.; Maier, S.A.; Bragas, A.V. Tailored Hypersound Generation in Single Plasmonic Nanoantennas. Nano Lett. 2016, 16, 1428–1434. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo López de Larrinzar, B.; García, J.M.; Lanzillotti-Kimura, N.D.; García-Martín, A. Photonic and Nanomechanical Modes in Acoustoplasmonic Toroidal Nanopropellers. Nanomaterials 2024, 14, 1276. https://doi.org/10.3390/nano14151276
Castillo López de Larrinzar B, García JM, Lanzillotti-Kimura ND, García-Martín A. Photonic and Nanomechanical Modes in Acoustoplasmonic Toroidal Nanopropellers. Nanomaterials. 2024; 14(15):1276. https://doi.org/10.3390/nano14151276
Chicago/Turabian StyleCastillo López de Larrinzar, Beatriz, Jorge M. García, Norberto Daniel Lanzillotti-Kimura, and Antonio García-Martín. 2024. "Photonic and Nanomechanical Modes in Acoustoplasmonic Toroidal Nanopropellers" Nanomaterials 14, no. 15: 1276. https://doi.org/10.3390/nano14151276
APA StyleCastillo López de Larrinzar, B., García, J. M., Lanzillotti-Kimura, N. D., & García-Martín, A. (2024). Photonic and Nanomechanical Modes in Acoustoplasmonic Toroidal Nanopropellers. Nanomaterials, 14(15), 1276. https://doi.org/10.3390/nano14151276