Influence of Heat Treatment on Microstructure, Mechanical Properties, and Damping Behavior of 2024 Aluminum Matrix Composites Reinforced by Carbon Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composites Preparation
2.2. Structural Characterization
2.3. Mechanical Characterization
2.4. Dynamic Mechanical Analysis
3. Results and Discussion
3.1. Structural Characterization
3.2. Mechanical Characterization
3.3. Dynamic Mechanical Analysis Results
3.4. Density Results
3.5. Fracture Surface Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, J.; Chauhan, A. Characterization of hybrid aluminum matrix composites for advanced applications—A review. J. Mater. Res. Technol. 2016, 5, 159–169. [Google Scholar] [CrossRef]
- Shao, M.H.; Fu, Y.; Hu, R.G.; Lin, C.J. A study on pitting corrosion of aluminum alloy 2024-T3 by scanning microreference electrode technique. Mater. Sci. Eng. A 2003, 344, 323–327. [Google Scholar] [CrossRef]
- Staszczyk, A.; Sawicki, J.; Adamczyk-Cieslak, B. A Study of Second-Phase Precipitates and Dispersoid Particles in 2024 Aluminum Alloy after Different Aging Treatments. Materials 2019, 12, 4168. [Google Scholar] [CrossRef] [PubMed]
- Rativa-Parada, W.; Nilufar, S. Nanocarbon-Infused Metal Matrix Composites: A Review. JOM 2023, 75, 4009–4023. [Google Scholar] [CrossRef]
- Pourmand, N.S.; Asgharzadeh, H. Aluminum Matrix Composites Reinforced with Graphene: A Review on Production, Microstructure, and Properties. Crit. Rev. Solid State Mater. Sci. 2020, 45, 289–337. [Google Scholar] [CrossRef]
- Sirikumara, H.I.; Rativa-Parada, W.; Karunanithy, R.; Sivakumar, P.; Nilufar, S.; Jayasekera, T. Atomic composition/configuration dependent bulk moduli of Al-C composites. Aip Adv. 2022, 12, 115008. [Google Scholar] [CrossRef]
- Rativa-Parada, W.; Sirikumara, H.I.; Karunanithy, R.; Sivakumar, P.; Jayasekera, T.; Nilufar, S. Effect of Nanocarbon on the Structural and Mechanical Properties of 6061 Aluminum Composites by Powder Metallurgy. Nanomaterials 2023, 13, 2917. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Gao, W.L.; Feng, Z.H.; Lu, Z. Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater. Des. 2012, 36, 590–596. [Google Scholar] [CrossRef]
- Hao, S.M.; Xie, J.P. Tensile properties and strengthening mechanisms of SiCp-reinforced aluminum matrix composites as a function of relative particle size ratio. J. Mater. Res. 2013, 28, 2047–2055. [Google Scholar] [CrossRef]
- Shin, S.E.; Ko, Y.J.; Bae, D.H. Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures. Compos. Part B Eng. 2016, 106, 66–73. [Google Scholar] [CrossRef]
- Chen, G.; Chang, X.S.; Zhang, J.X.; Jin, Y.; Sun, C.; Chen, Q.; Zhao, Z.D. Microstructures and Mechanical Properties of In-Situ Al3Ti/2024 Aluminum Matrix Composites Fabricated by Ultrasonic Treatment and Subsequent Squeeze Casting. Met. Mater. Int. 2020, 26, 1574–1584. [Google Scholar] [CrossRef]
- Shin, S.E.; Bae, D.H. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Compos. Part A Appl. Sci. Manuf. 2015, 78, 42–47. [Google Scholar] [CrossRef]
- Aydin, F. Investigation of Elevated Temperature Wear Behavior of Al 2024-BN Composites using Statistical Techniques. J. Mater. Eng. Perform. 2021, 30, 8560–8578. [Google Scholar] [CrossRef]
- Jiang, J.F.; Xiao, G.F.; Che, C.J.; Wang, Y. Microstructure, Mechanical Properties and Wear Behavior of the Rheoformed 2024 Aluminum Matrix Composite Component Reinforced by Al2O3 Nanoparticles. Metals 2018, 8, 460. [Google Scholar] [CrossRef]
- Yuan, Z.W.; Tian, W.B.; Li, F.G.; Fu, Q.Q.; Hu, Y.B.; Wang, X.G. Microstructure and properties of high-entropy alloy reinforced aluminum matrix composites by spark plasma sintering. J. Alloys Compd. 2019, 806, 901–908. [Google Scholar] [CrossRef]
- Xie, K.; Cai, B.; Zhang, G.P.; Shi, Y.J.; Li, M.J.; Huang, H.; Huang, J.J.; Zhou, W.W.; Liu, Z.X. High-strength Al matrix composites reinforced with uniformly dispersed nanodiamonds. J. Alloys Compd. 2022, 898, 162917. [Google Scholar] [CrossRef]
- Zhang, P.X.; Yan, H.; Liu, W.; Zou, X.L.; Tang, B.B. Effect of T6 Heat Treatment on Microstructure and Hardness of Nanosized Al2O3 Reinforced 7075 Aluminum Matrix Composites. Metals 2019, 9, 44. [Google Scholar] [CrossRef]
- Mistry, J.M.; Gohil, P.P. Experimental investigations on wear and friction behaviour of Si3N4p reinforced heat-treated aluminium matrix composites produced using electromagnetic stir casting process. Compos. Part B Eng. 2019, 161, 190–204. [Google Scholar] [CrossRef]
- Hanizam, H.; Salleh, M.S.; Omar, M.Z.; Sulong, A. Optimisation of mechanical stir casting parameters for fabrication of carbon nanotubes-aluminium alloy composite through Taguchi method. J. Mater. Res. Technol. 2019, 8, 2223–2231. [Google Scholar] [CrossRef]
- Lakshmikanthan, A.; Prabhu, T.R.; Babu, U.S.; Koppad, P.G.; Gupta, M.; Krishna, M.; Bontha, S. The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites. J. Mater. Res. Technol. 2020, 9, 6434–6452. [Google Scholar] [CrossRef]
- Rojas, J.I.; Siva, B.V.; Sahoo, K.L.; Crespo, D. Viscoelastic behavior of a novel aluminum metal matrix composite and comparison with pure aluminum, aluminum alloys, and a composite made of Al-Mg-Si alloy reinforced with SiC particles. J. Alloys Compd. 2018, 744, 445–452. [Google Scholar] [CrossRef]
- Hu, J.; Wu, G.H.; Zhang, Q.; Gou, H.S. Mechanical properties and damping capacity of SiCp/TiNif/Al composite with different volume fraction of SiC particle. Compos. Part B Eng. 2014, 66, 400–406. [Google Scholar] [CrossRef]
- ASTM E9-09; Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature. ASTM: West Conshohocken, PA, USA, 2018; pp. 1–9.
- Zhao, B.Y.; Cai, Q.Z.; Cheng, J.F.; Yang, S.F.; Chen, F. Microstructure and properties of as-cast Al-4.5Cu-1.5Mg alloy refined with Ti-supported TiC nanoparticles via ultrasonic-assisted addition. Mater. Sci. Eng. A 2019, 765, 138271. [Google Scholar] [CrossRef]
- Prosviryakov, A.; Bazlov, A.; Pozdniakov, A.; Emelina, N. Low-Cost Mechanically Alloyed Copper-Based Composite Reinforced with Silicate Glass Particles for Thermal Applications. JOM 2019, 71, 995–1001. [Google Scholar] [CrossRef]
- Li, M.X.; Yang, W.K.; Tian, X.L.; Chen, L.W.; Hou, H.; Zhao, Y.H. Precipitation and refining of Al2Cu in graphene nanoplatelets reinforced 2024 Al composites. Mater. Charact. 2023, 200, 112854. [Google Scholar] [CrossRef]
- Zhou, Y.; Lin, M.; Liu, C.Z.; Wang, L.; Chen, H.; Dan, C.Y.; Ma, S.M.; Chen, Z.; Wang, H.W. Enhancing mechanical properties of uniformly distributed nano TiB/2024 Al composite rolling sheet by pre-stretch aging. J. Alloys Compd. 2022, 913, 165172. [Google Scholar] [CrossRef]
- Pan, S.H.; Yuan, J.; Jin, K.Y.; Murali, N.; Gladstein, A.; Zeng, Y.X.; Taub, A.; Li, X.C. Influence of Mg on reaction and properties of Al-Si/TiC nanocomposites. Mater. Sci. Eng. A 2022, 840, 142992. [Google Scholar] [CrossRef]
- Ertugrul, O.; He, T.B.; Shahid, R.N.; Scudino, S. Effect of heat treatment on microstructure and mechanical properties of Al 2024 matrix composites reinforced with Ni60Nb40 metallic glass particles. J. Alloys Compd. 2019, 808, 151732. [Google Scholar] [CrossRef]
- Choi, H.J.; Min, B.H.; Shin, J.H.; Bae, D.H. Strengthening in nanostructured 2024 aluminum alloy and its composites containing carbon nanotubes. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1438–1444. [Google Scholar] [CrossRef]
- Wang, Y.B.; Jiang, H.J.; Liu, C.Y.; Huang, H.F.; Wei, L.L.; Qin, F.C. Influence of Al particle layer on damping behavior of Alp/7075Al composites fabricated by hot rolling. J. Alloys Compd. 2021, 882, 160763. [Google Scholar] [CrossRef]
- Ding, C.Y.; Jiang, H.J.; Qin, H.B.; Liu, C.Y.; Wei, L.L.; Liu, S.H.; Huang, H.F. Investigation of phase transition, mechanical properties, and damping behavior of NiTip/6061Al laminar composites. J. Alloys Compd. 2023, 967, 171785. [Google Scholar] [CrossRef]
- Reddy, M.P.; Manakari, V.; Parande, G.; Ubaid, F.; Shakoor, R.A.; Mohamed, A.M.A.; Gupta, M. Enhancing compressive, tensile, thermal and damping response of pure Al using BN nanoparticles. J. Alloys Compd. 2018, 762, 398–408. [Google Scholar] [CrossRef]
- Wang, F.; Li, L.; Jiang, X.L.; Tang, H.S.; Wang, X.L.; Hu, Y.J. High damping and modulus of aluminum matrix composites reinforced with carbon nanotube skeleton inspired by diamond lattice. Compos. Struct. 2023, 323, 117451. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, M. Internal friction behavior in SiC particulate reinforced aluminum metal matrix composite in thermal cycling. J. Alloys Compd. 2006, 426, 247–252. [Google Scholar] [CrossRef]
- Kumar, K.P.; Krishna, M.G.; Rao, J.B.; Bhargava, N.R.M.R. Fabrication and characterization of 2024 aluminium—High entropy alloy composites. J. Alloys Compd. 2015, 640, 421–427. [Google Scholar] [CrossRef]
- Shin, J.H.; Choi, H.J.; Bae, D.H. The structure and properties of 2024 aluminum composites reinforced with TiO2 nanoparticles. Mater. Sci. Eng. A 2014, 607, 605–610. [Google Scholar] [CrossRef]
- Hong, S.J.; Kim, H.M.; Huh, D.; Suryanarayana, C.; Chun, B.S. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites. Mater. Sci. Eng. A 2003, 347, 198–204. [Google Scholar] [CrossRef]
Denomination | Composition |
---|---|
2024 | 2024 aluminum without any reinforcement |
24Ac1 | 2024 aluminum reinforced with 1 vol. % of activated nanocarbon |
24Ac2 | 2024 aluminum reinforced with 2 vol. % of activated nanocarbon |
24Gn0.5 | 2024 aluminum reinforced with 0.5 vol. % of graphene nanoplatelets |
24Gn1 | 2024 aluminum reinforced with 1 vol. % of graphene nanoplatelets |
2024-HT | 2024 aluminum without any reinforcement and heat treatment |
24Ac1-HT | 2024 aluminum reinforced with 1 vol. % of activated nanocarbon and heat treatment |
24Ac2-HT | 2024 aluminum reinforced with 2 vol. % of activated nanocarbon and heat treatment |
24Gn0.5-HT | 2024 aluminum reinforced with 0.5 vol. % of graphene nanoplatelets and heat treatment |
24Gn1-HT | 2024 aluminum reinforced with 1 vol. % of graphene nanoplatelets and heat treatment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rativa-Parada, W.; Nilufar, S. Influence of Heat Treatment on Microstructure, Mechanical Properties, and Damping Behavior of 2024 Aluminum Matrix Composites Reinforced by Carbon Nanoparticles. Nanomaterials 2024, 14, 1342. https://doi.org/10.3390/nano14161342
Rativa-Parada W, Nilufar S. Influence of Heat Treatment on Microstructure, Mechanical Properties, and Damping Behavior of 2024 Aluminum Matrix Composites Reinforced by Carbon Nanoparticles. Nanomaterials. 2024; 14(16):1342. https://doi.org/10.3390/nano14161342
Chicago/Turabian StyleRativa-Parada, Wilson, and Sabrina Nilufar. 2024. "Influence of Heat Treatment on Microstructure, Mechanical Properties, and Damping Behavior of 2024 Aluminum Matrix Composites Reinforced by Carbon Nanoparticles" Nanomaterials 14, no. 16: 1342. https://doi.org/10.3390/nano14161342
APA StyleRativa-Parada, W., & Nilufar, S. (2024). Influence of Heat Treatment on Microstructure, Mechanical Properties, and Damping Behavior of 2024 Aluminum Matrix Composites Reinforced by Carbon Nanoparticles. Nanomaterials, 14(16), 1342. https://doi.org/10.3390/nano14161342