Novel ST1926 Nanoparticle Drug Formulation Enhances Drug Therapeutic Efficiency in Colorectal Cancer Xenografted Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation of ST1926-Nanoparticles
2.3. Characterization of ST1926-Nanoparticles
2.4. High-Performance Liquid Chromatography
2.5. Cell Culture
2.6. Cell Growth Assay
2.7. Cell Viability Assay
2.8. Cell Cycle Analysis
2.9. Western Blotting
2.10. In Vivo Antitumor Efficacy
2.11. Preparation of Standard Solutions
2.12. Preparation of Plasma Samples
2.13. Preparation of Tumor Homogenate Samples
2.14. High-Performance Liquid Chromatography–Mass Spectrometry/Mass Spectrometry Conditions for the Quantification of ST1926 in Plasma Samples
2.15. High-Performance Liquid Chromatography–Quadrupole Time-of-Flight/Mass Spectrometry Conditions for the Quantification of ST1926 in Tumor Samples
2.16. Statistical Analysis
3. Results
3.1. Formulation and Characterization of ST1926-Nanoparticles
3.2. ST1926 Naked Drug and Nanoparticle Formulation Exhibit Comparable Potent Growth Inhibitory Effects in Colorectal Cancer Cells
3.3. ST1926 Naked Drug and Nanoparticle Formulation Induce Sub-G1 Cell Accumulation and Cell Cycle Arrest
3.4. ST1926 Naked Drug and Nanoparticle Formulation Induce Apoptosis and Early DNA Damage in Colorectal Cancer Cells
3.5. Formulating ST1926 into Nanoparticles Increases the Tberapeutic Efficiency of ST1926 in Treated Mice
3.6. Plasma ST1926 Concentrations Did Not Significantly Differ in Mice Treated with Naked or Formulated ST1926
3.7. Formulating ST1926 into Nanoparticles Enhances Drug Delivery to the Tumors
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nirmala, M.J.; Kizhuveetil, U.; Johnson, A.; Balaji, G.; Nagarajan, R.; Muthuvijayan, V. Cancer nanomedicine: A review of nano-therapeutics and challenges ahead. RSC Adv. 2023, 13, 8606–8629. [Google Scholar] [CrossRef] [PubMed]
- Alrushaid, N.; Khan, F.A.; Al-Suhaimi, E.A.; Elaissari, A. Nanotechnology in cancer diagnosis and treatment. Pharmaceutics 2023, 15, 1025. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed. Technol. 2024, 5, 109–122. [Google Scholar] [CrossRef]
- Ahmad, F.; Salem-Bekhit, M.M.; Khan, F.; Alshehri, S.; Khan, A.; Ghoneim, M.M.; Wu, H.F.; Taha, E.I.; Elbagory, I. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. Nanomaterials 2022, 12, 1333. [Google Scholar] [CrossRef] [PubMed]
- Lohiya, G.; Katti, D.S. Carboxylated chitosan-mediated improved efficacy of mesoporous silica nanoparticle-based targeted drug delivery system for breast cancer therapy. Carbohydr. Polym. 2022, 277, 118822. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Zeinabad, H.; Yeoh, W.J.; Arif, M.; Lomora, M.; Banz, Y.; Riether, C.; Krebs, P.; Szegezdi, E. Natural killer cell-mimic nanoparticles can actively target and kill acute myeloid leukemia cells. Biomaterials 2023, 298, 122126. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Chen, X.; Shen, Y. Folate-modified carboxymethyl chitosan-based drug delivery system for breast cancer specific combination therapy via regulating mitochondrial calcium concentration. Carbohydr. Polym. 2024, 323, 121434. [Google Scholar] [CrossRef] [PubMed]
- Cisterna, B.A.; Kamaly, N.; Choi, W.I.; Tavakkoli, A.; Farokhzad, O.C.; Vilos, C. Targeted nanoparticles for colorectal cancer. Nanomedicine 2016, 11, 2443–2456. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Ferraro, M.; Haag, R.; Quadir, M. Dendritic Polyglycerol-Derived Nano-Architectures as Delivery Platforms of Gemcitabine for Pancreatic Cancer. Macromol. Biosci. 2019, 19, e1900073. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, L.; Zhao, N.; Xin, H. Cu2+-Citrate-Chitosan Complex Nanoparticles for the Chemodynamic Therapy of Lung Cancer. ACS Omega 2024, 9, 8425–8433. [Google Scholar] [CrossRef]
- Fleige, E.; Quadir, M.A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Adv. Drug Deliv. Rev. 2012, 64, 866–884. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Si, M.; Xue, H.Y.; Wong, H.L. Nanomedicine applications in the treatment of breast cancer: Current state of the art. Int. J. Nanomed. 2017, 12, 5879–5892. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Gautam, V.; Sandhu, A.; Rawat, K.; Sharma, A.; Saha, L. Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review. World J. Gastrointest. Surg. 2023, 15, 495–519. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Teh, S.S.; Lau, H.L.N.; Xiao, J.; Mah, S.H. Retinoids as anti-cancer agents and their mechanisms of action. Am. J. Cancer Res. 2022, 12, 938–960. [Google Scholar]
- Ma, Y.-F.; Lu, Y.; Wu, Q.; Lou, Y.-J.; Yang, M.; Xu, J.-Y.; Sun, C.-H.; Mao, L.-P.; Xu, G.-X.; Li, L. Oral arsenic and retinoic acid for high-risk acute promyelocytic leukemia. J. Hematol. Oncol. 2022, 15, 148. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, S.; Yang, J.; Zhang, G.; Su, Y.; Zhang, M.; He, J.; Shi, Y.; Li, W.; Lu, P. Long-term retrospective study of retinoic acid combined with arsenic and chemotherapy for acute promyelocytic leukemia. Int. J. Hematol. 2023, 117, 530–537. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, X.; Duan, X.; Li, S.; Li, N.; Dou, J. Retinoic Acid and Its Derivatives in Dermatological Disorders. Int. J. Public Health Med. Res. 2024, 1, 1–6. [Google Scholar] [CrossRef]
- Tallman, M.S. Acute promyelocytic leukemia as a paradigm for targeted therapy. Semin. Hematol. 2004, 41, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Giuli, M.V.; Hanieh, P.N.; Giuliani, E.; Rinaldi, F.; Marianecci, C.; Screpanti, I.; Checquolo, S.; Carafa, M. Current Trends in ATRA Delivery for Cancer Therapy. Pharmaceutics 2020, 12, 707. [Google Scholar] [CrossRef] [PubMed]
- Garattini, E.; Parrella, E.; Diomede, L.; Gianni, M.; Kalac, Y.; Merlini, L.; Simoni, D.; Zanier, R.; Ferrara, F.F.; Chiarucci, I.; et al. ST1926, a novel and orally active retinoid-related molecule inducing apoptosis in myeloid leukemia cells: Modulation of intracellular calcium homeostasis. Blood 2004, 103, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Zuco, V.; Benedetti, V.; De Cesare, M.; Zunino, F. Sensitization of ovarian carcinoma cells to the atypical retinoid ST1926 by the histone deacetylase inhibitor, RC307: Enhanced DNA damage response. Int. J. Cancer 2010, 126, 1246–1255. [Google Scholar] [CrossRef]
- Basma, H.; Ghayad, S.E.; Rammal, G.; Mancinelli, A.; Harajly, M.; Ghamloush, F.; Dweik, L.; El-Eit, R.; Zalzali, H.; Rabeh, W.; et al. The synthetic retinoid ST1926 as a novel therapeutic agent in rhabdomyosarcoma. Int. J. Cancer 2016, 138, 1528–1537. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Samad, R.; Aouad, P.; Gali-Muhtasib, H.; Sweidan, Z.; Hmadi, R.; Kadara, H.; D’Andrea, E.L.; Fucci, A.; Pisano, C.; Darwiche, N. Mechanism of action of the atypical retinoid ST1926 in colorectal cancer: DNA damage and DNA polymerase α. Am. J. Cancer Res. 2018, 8, 39–55. [Google Scholar] [PubMed]
- El-Houjeiri, L.; Saad, W.; Hayar, B.; Aouad, P.; Tawil, N.; Abdel-Samad, R.; Hleihel, R.; Hamie, M.; Mancinelli, A.; Pisano, C.; et al. Antitumor Effect of the Atypical Retinoid ST1926 in Acute Myeloid Leukemia and Nanoparticle Formulation Prolongs Lifespan and Reduces Tumor Burden of Xenograft Mice. Mol. Cancer Ther. 2017, 16, 2047–2057. [Google Scholar] [CrossRef]
- El Hajj, H.; Khalil, B.; Ghandour, B.; Nasr, R.; Shahine, S.; Ghantous, A.; Abdel-Samad, R.; Sinjab, A.; Hasegawa, H.; Jabbour, M.; et al. Preclinical efficacy of the synthetic retinoid ST1926 for treating adult T-cell leukemia/lymphoma. Blood 2014, 124, 2072–2080. [Google Scholar] [CrossRef]
- Sala, F.; Zucchetti, M.; Bagnati, R.; D’Incalci, M.; Pace, S.; Capocasa, F.; Marangon, E. Development and validation of a liquid chromatography-tandem mass spectrometry method for the determination of ST1926, a novel oral antitumor agent, adamantyl retinoid derivative, in plasma of patients in a Phase I study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 3118–3126. [Google Scholar] [CrossRef]
- Saad, W.S.; Prud’homme, R.K. Principles of nanoparticle formation by flash nanoprecipitation. Nano Today 2016, 11, 212–227. [Google Scholar] [CrossRef]
- Lin, F.-Y.; Cheng, C.-Y.; Chuang, Y.-H.; Tung, S.-H. Polymersomes with high loading capacity prepared by direct self-assembly of block copolymers in drugs. Polymer 2018, 134, 117–124. [Google Scholar] [CrossRef]
- Wan, K.Y.; Wong, S.N.; Wong, K.W.; Chow, S.F.; Lum Chow, A.H. Interplay between Amphiphilic Stabilizers and Cholesterol in the Stabilization of Itraconazole Nanoparticles Prepared by Flash Nanoprecipitation. Mol. Pharm. 2019, 16, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.H.; Siah, K.W.; Lo, A.W. Estimation of clinical trial success rates and related parameters. Biostatistics 2019, 20, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Giannini, G.; Brunetti, T.; Battistuzzi, G.; Alloatti, D.; Quattrociocchi, G.; Cima, M.G.; Merlini, L.; Dallavalle, S.; Cincinelli, R.; Nannei, R.; et al. New retinoid derivatives as back-ups of Adarotene. Bioorg. Med. Chem. 2012, 20, 2405–2415. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, R.; Dallavalle, S.; Merlini, L.; Penco, S.; Pisano, C.; Carminati, P.; Giannini, G.; Vesci, L.; Gaetano, C.; Illy, B.; et al. A novel atypical retinoid endowed with proapoptotic and antitumor activity. J. Med. Chem. 2003, 46, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Korake, S.; Bothiraja, C.; Pawar, A. Design, development, and in-vitro/in-vivo evaluation of docetaxel-loaded PEGylated solid lipid nanoparticles in prostate cancer therapy. Eur. J. Pharm. Biopharm. 2023, 189, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Guo, F.; Yu, N.; Ying, S.; Lou, B.; Wu, J.; Gao, Y.; Ji, X.; Wang, H.; Li, A.; et al. A Novel Folic Acid Receptor-Targeted Drug Delivery System Based on Curcumin-Loaded β-Cyclodextrin Nanoparticles for Cancer Treatment. Drug Des. Dev. Ther. 2021, 15, 2843–2855. [Google Scholar] [CrossRef] [PubMed]
- Assi, S.; El Hajj, H.; Hayar, B.; Pisano, C.; Saad, W.; Darwiche, N. Development and challenges of synthetic retinoid formulations in cancer. Curr. Drug Deliv. 2023, 20, 1314–1326. [Google Scholar] [CrossRef] [PubMed]
- Cincinelli, R.; Musso, L.; Dallavalle, S.; Artali, R.; Tinelli, S.; Colangelo, D.; Zunino, F.; De Cesare, M.; Beretta, G.L.; Zaffaroni, N. Design, modeling, synthesis and biological activity evaluation of camptothecin-linked platinum anticancer agents. Eur. J. Med. Chem. 2013, 63, 387–400. [Google Scholar] [CrossRef]
- Li, Y.; Ke, J.; Jia, H.; Ren, J.; Wang, L.; Zhang, Z.; Wang, C. Cancer cell membrane coated PLGA nanoparticles as biomimetic drug delivery system for improved cancer therapy. Colloids Surf. B Biointerfaces 2023, 222, 113131. [Google Scholar] [CrossRef]
- De, L.; Yuan, T.; Yong, Z. ST1926 inhibits glioma progression through regulating mitochondrial complex II. Biomed. Pharmacother. 2020, 128, 110291. [Google Scholar] [CrossRef]
- Zhang, B.; Hu, Y.; Pang, Z. Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery. Front. Pharmacol. 2017, 8, 952. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, C.R.; Flenniken, M.L.; Gillitzer, E.; Harmsen, A.L.; Harmsen, A.G.; Jutila, M.A.; Douglas, T.; Young, M.J. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int. J. Nanomed. 2007, 2, 715–733. [Google Scholar]
- Cabral, H.; Li, J.; Miyata, K.; Kataoka, K. Controlling the biodistribution and clearance of nanomedicines. Nat. Rev. Bioeng. 2023, 2, 214–232. [Google Scholar] [CrossRef]
- Xu, L.; Xu, M.; Sun, X.; Feliu, N.; Feng, L.; Parak, W.J.; Liu, S. Quantitative comparison of gold nanoparticle delivery via the enhanced permeation and retention (EPR) effect and mesenchymal stem cell (MSC)-based targeting. ACS Nano 2023, 17, 2039–2052. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, X.; Zhao, Y.; Li, Y.; Wang, X.; Deng, J.; Qi, Z. Strengthened EPR effect of AIEgen-Poly (I: C) composite nanoparticles to facilitate antigen cross-presentation and improve melanoma prognosis by evoking immunity. Chem. Eng. J. 2023, 473, 145205. [Google Scholar] [CrossRef]
- Peplow, P.V. Animal models in medical translation: The grand challenge of developing new treatments for human diseases. Front. Med. Technol. 2024, 6, 1367521. [Google Scholar] [CrossRef]
Treatment | Control | ST1926 | Control-NP * | ST1926-NP * |
---|---|---|---|---|
Number of mice | 7 (3 males, 4 females) | 7 (4 males, 3 females) | 10 (5 males, 5 females) | 10 (4 males, 6 females) |
Sample Name | Calculated Concentrations (ng/mL) |
---|---|
ST1926-1 (female) | <LOD * |
ST1926-2 (female) | <LOD * |
ST1926-3 (female) | <LOD * |
ST1926-4 (male) | <LOD * |
ST1926-5 (male) | <LOD * |
ST1926-6 (male) | <LOD * |
ST1926-7 (male) | <LOD * |
ST1926-NP *-1 (female) | 6.083 |
ST1926-NP *-2 (female) | 74.84 |
ST1926-NP *-3 (female) | 31.28 |
ST1926-NP *-4 (female) | 43.41 |
ST1926-NP *-5 (male) | 42.3 |
ST1926-NP *-6 (male) | 68.75 |
ST1926-NP *-7 (female) | <LOD * |
ST1926-NP *-8 (female) | <LOD * |
ST1926-NP *-9 (male) | <LOD * |
ST1926-NP *-10 (male) | <LOD * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assi, S.; Hayar, B.; Pisano, C.; Darwiche, N.; Saad, W. Novel ST1926 Nanoparticle Drug Formulation Enhances Drug Therapeutic Efficiency in Colorectal Cancer Xenografted Mice. Nanomaterials 2024, 14, 1380. https://doi.org/10.3390/nano14171380
Assi S, Hayar B, Pisano C, Darwiche N, Saad W. Novel ST1926 Nanoparticle Drug Formulation Enhances Drug Therapeutic Efficiency in Colorectal Cancer Xenografted Mice. Nanomaterials. 2024; 14(17):1380. https://doi.org/10.3390/nano14171380
Chicago/Turabian StyleAssi, Sara, Berthe Hayar, Claudio Pisano, Nadine Darwiche, and Walid Saad. 2024. "Novel ST1926 Nanoparticle Drug Formulation Enhances Drug Therapeutic Efficiency in Colorectal Cancer Xenografted Mice" Nanomaterials 14, no. 17: 1380. https://doi.org/10.3390/nano14171380
APA StyleAssi, S., Hayar, B., Pisano, C., Darwiche, N., & Saad, W. (2024). Novel ST1926 Nanoparticle Drug Formulation Enhances Drug Therapeutic Efficiency in Colorectal Cancer Xenografted Mice. Nanomaterials, 14(17), 1380. https://doi.org/10.3390/nano14171380