Single Crystal Sn-Based Halide Perovskites
Abstract
:1. Introduction
2. Growth and Fabrication Techniques for Single Crystal Sn-Based Halide Perovskites
2.1. Temperature Lowering (TL) Method
2.2. Top-Seeded Solution Growth (TSSG) Method
2.3. Hydrothermal and Bridgman Method
2.4. Inverse Temperature Crystallization (ITC)
2.5. Space-Confined (SC) Method
2.6. Synthesis Methods for 2D Sn-Based Halide Perovskite Single Crystals
2.7. Miscellaneous Synthesis Methods
3. Charge Transport Properties of Single Crystals of Sn-Based Halide Perovskites
3.1. Optical Properties
3.2. Electrical Properties
3.3. Defects and Doping
4. Applications of Single Crystals of Sn-Based Halide Perovskites
4.1. Photodetectors
4.2. Solar Cells
4.3. X-ray Detectors
4.4. Miscellaneous Applications
5. Current Challenges, Conclusions and Assessments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, D.; Zhou, T.; Tian, Y.; Zhu, X.; Tu, Y. Perovskite-Based Solar Cells: Materials, Methods, and Future Perspectives. J. Nanomater. 2018, 2018, 8148072. [Google Scholar] [CrossRef]
- Jellicoe, T.C.; Richter, J.M.; Glass, H.F.J.; Tabachnyk, M.; Brady, R.; Dutton, S.E.; Rao, A.; Friend, R.H.; Credgington, D.; Greenham, N.C.; et al. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944. [Google Scholar] [CrossRef]
- Jiang, X.; Zang, Z.; Zhou, Y.; Li, H.; Wei, Q.; Ning, Z. Tin Halide Perovskite Solar Cells: An Emerging Thin-Film Photovoltaic Technology. Acc. Mater. Res. 2021, 2, 210–219. [Google Scholar] [CrossRef]
- Abate, A. Perovskite Solar Cells Go Lead Free. Joule 2017, 1, 659–664. [Google Scholar] [CrossRef]
- Abate, A. Stable Tin-Based Perovskite Solar Cells. ACS Energy Lett. 2023, 8, 1896–1899. [Google Scholar] [CrossRef]
- Yang, F.; Zhu, K. Advances in Mixed Tin-Lead Narrow-Bandgap Perovskites for Single-Junction and All-Perovskite Tandem Solar Cells. Adv. Mater. 2024, 36, 2314341. [Google Scholar] [CrossRef]
- Chowdhury, T.H.; Reo, Y.; Yusoff, A.R.B.M.; Noh, Y.Y. Sn-Based Perovskite Halides for Electronic Devices. Adv. Sci. 2022, 9, 2203749. [Google Scholar] [CrossRef]
- Jokar, E.; Cai, L.; Han, J.; Nacpil, E.J.C.; Jeon, I. Emerging Opportunities in Lead-Free and Lead-Tin Perovskites for Environmentally Viable Photodetector Applications. Chem. Mater. 2023, 35, 3404–3426. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, Y.; Xing, G.; Xu, Q.; Garces, H.F.; Solanki, A.; Goh, T.W.; Padture, N.P.; Sum, T.C. Long Minority-Carrier Diffusion Length and Low Surface-Recombination Velocity in Inorganic Lead-Free CsSnI3 Perovskite Crystal for Solar Cells. Adv. Funct. Mater. 2017, 27, 1604818. [Google Scholar] [CrossRef]
- Soultati, A.; Tountas, M.; Armadorou, K.K.; Yusoff, A.R.b.M.; Vasilopoulou, M.; Nazeeruddin, M.K. Synthetic Approaches for Perovskite Thin Films and Single-Crystals. Energy Adv. 2023, 2, 1075–1115. [Google Scholar] [CrossRef]
- Bhaumik, S.; Ray, S.; Batabyal, S.K. Recent Advances of Lead-Free Metal Halide Perovskite Single Crystals and Nanocrystals: Synthesis, Crystal Structure, Optical Properties, and Their Diverse Applications. Mater. Today Chem. 2020, 18, 100363. [Google Scholar] [CrossRef]
- De Marco, L.; Nasti, G.; Abate, A.; Rizzo, A. Perovskite Single-Crystal Solar Cells: Advances and Challenges. Sol. RRL 2022, 6, 2101085. [Google Scholar] [CrossRef]
- Priyadarshini, N.; Mansingh, S.; Das, K.K.; Mohanty, R.; Parida, K.; Barik, G.; Parida, K. Single Crystal Perovskite an Emerging Photocatalytic and Storage Material: Synthesis to Applications via Theoretical Insight. Phys. Rep. 2024, 1061, 1–53. [Google Scholar] [CrossRef]
- Rong, S.S.; Faheem, M.B.; Li, Y.B. Perovskite Single Crystals: Synthesis, Properties, and Applications. J. Electron. Sci. Technol. 2021, 19, 100081. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, S. Composition Engineering of Perovskite Single Crystals for High-Performance Optoelectronics. Adv. Funct. Mater. 2023, 33, 2210335. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Gan, S.; Dou, D.; Li, L. Perovskite Single Crystals: Physical Properties and Optoelectronic Applications. Mater. Futures 2023, 2, 042101. [Google Scholar] [CrossRef]
- Yan, J.; Li, H.; Aldamasy, M.H.; Frasca, C.; Abate, A.; Zhao, K.; Hu, Y. Advances in the Synthesis of Halide Perovskite Single Crystals for Optoelectronic Applications. Chem. Mater. 2023, 35, 2683–2712. [Google Scholar] [CrossRef]
- Li, H.; Shen, N.; Chen, S.; Guo, F.; Xu, B. Recent Progress on Synthesis, Intrinsic Properties and Optoelectronic Applications of Perovskite Single Crystals. Adv. Funct. Mater. 2023, 33, 2214339. [Google Scholar] [CrossRef]
- Ke, W.; Stoumpos, C.C.; Kanatzidis, M.G. “Unleaded” Perovskites: Status Quo and Future Prospects of Tin-Based Perovskite Solar Cells. Adv. Mater. 2019, 31, 1803230. [Google Scholar] [CrossRef]
- Yang, W.F.; Igbari, F.; Lou, Y.H.; Wang, Z.K.; Liao, L.S. Tin Halide Perovskites: Progress and Challenges. Adv. Energy Mater. 2020, 10, 1902584. [Google Scholar] [CrossRef]
- Gu, S.; Lin, R.; Han, Q.; Gao, Y.; Tan, H.; Zhu, J. Tin and Mixed Lead–Tin Halide Perovskite Solar Cells: Progress and Their Application in Tandem Solar Cells. Adv. Mater. 2020, 32, 1907392. [Google Scholar] [CrossRef] [PubMed]
- Pitaro, M.; Tekelenburg, E.K.; Shao, S.; Loi, M.A. Tin Halide Perovskites: From Fundamental Properties to Solar Cells. Adv. Mater. 2022, 34, 2105844. [Google Scholar] [CrossRef] [PubMed]
- Ju, D.; Zheng, X.; Liu, J.; Chen, Y.; Zhang, J.; Cao, B.; Xiao, H.; Mohammed, O.F.; Bakr, O.M.; Tao, X. Reversible Band Gap Narrowing of Sn-Based Hybrid Perovskite Single Crystal with Excellent Phase Stability. Angew. Chem. 2018, 130, 15084–15088. [Google Scholar] [CrossRef]
- Jiang, X.; Li, T.; Kong, Q.; Sun, Y.; Tao, X. Centimeter-Sized Novel Two-Dimensional Organic Lead-Tin Mixed Iodide Single Crystals for Efficient Photodetector Applications. Inorg. Chem. Front. 2023, 11, 451–461. [Google Scholar] [CrossRef]
- Dang, Y.; Zhou, Y.; Liu, X.; Ju, D.; Xia, S.; Xia, H.; Tao, X. Formation of Hybrid Perovskite Tin Iodide Single Crystals by Top-Seeded Solution Growth. Angew. Chem. 2016, 128, 3508–3511. [Google Scholar] [CrossRef]
- Ju, D.; Dang, Y.; Zhu, Z.; Liu, H.; Chueh, C.C.; Li, X.; Wang, L.; Hu, X.; Jen, A.K.Y.; Tao, X. Tunable Band Gap and Long Carrier Recombination Lifetime of Stable Mixed CH3NH3PbxSn1−XBr3 Single Crystals. Chem. Mater. 2018, 30, 1556–1565. [Google Scholar] [CrossRef]
- Zhou, J.; Luo, J.; Rong, X.; Wei, P.; Molokeev, M.S.; Huang, Y.; Zhao, J.; Liu, Q.; Zhang, X.; Tang, J.; et al. Lead-Free Perovskite Derivative Cs2SnCl6−xBrx Single Crystals for Narrowband Photodetectors. Adv. Opt. Mater. 2019, 7, 1900139. [Google Scholar] [CrossRef]
- Xian, Y.; Zhang, Y.; Rahman, N.U.; Yin, H.; Long, Y.; Liu, P.; Li, W.; Fan, J. An Emerging All-Inorganic CsSnxPb1−XBr3 (0 ≤ x ≤ 1) Perovskite Single Crystal: Insight on Structural Phase Transition and Electronic Properties. J. Phys. Chem. C 2020, 124, 13434–13446. [Google Scholar] [CrossRef]
- Lei, Y.; Chen, Y.; Xu, S. Single-Crystal Halide Perovskites: Opportunities and Challenges. Matter 2021, 4, 2266–2308. [Google Scholar] [CrossRef]
- Valueva, A.D.; Novikov, S.A.; Bledsoe, J.; Cai, Y.; Maksimova, A.A.; Locklin, J.; Zhao, Y.; Klepov, V.V. Cubic Halide Perovskites in the Cs(Pb1−xSnx)(Br3−yCly) Solid Solutions for Crack-Free Bridgman Grown Single Crystals. MRS Commun. 2024. [Google Scholar] [CrossRef]
- Saidaminov, M.I.; Abdelhady, A.L.; Murali, B.; Alarousu, E.; Burlakov, V.M.; Peng, W.; Dursun, I.; Wang, L.; He, Y.; MacUlan, G.; et al. High-Quality Bulk Hybrid Perovskite Single Crystals within Minutes by Inverse Temperature Crystallization. Nat. Commun. 2015, 6, 7586. [Google Scholar] [CrossRef]
- Saidaminov, M.I.; Abdelhady, A.L.; Maculan, G.; Bakr, O.M. Retrograde Solubility of Formamidinium and Methylammonium Lead Halide Perovskites Enabling Rapid Single Crystal Growth. Chem. Commun. 2015, 51, 17658–17661. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, S.; Jia, C.; Liu, H.; Li, X. High-Performance Planar Self-Driven Visible and Near-Infrared Photodetector Based on Pb-Sn Perovskite Single Crystals. J. Phys. Chem. Lett. 2023, 14, 5148–5154. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, J.; Zeng, M.; Fu, L. Space-Confined Growth of Metal Halide Perovskite Crystal Films. Nano Res. 2021, 14, 1609–1624. [Google Scholar] [CrossRef]
- Chang, Z.; Lu, Z.; Deng, W.; Shi, Y.; Sun, Y.; Zhang, X.; Jie, J. Narrow-Bandgap Sn-Pb Mixed Perovskite Single Crystals for High-Performance near-Infrared Photodetectors. Nanoscale 2023, 15, 5053–5062. [Google Scholar] [CrossRef]
- Li, M.; He, Y.; Feng, X.; Qu, W.; Wei, W.; Yang, B.; Wei, H. Reductant Engineering in Stable and High-Quality Tin Perovskite Single Crystal Growth for Heterojunction X-Ray Detectors. Adv. Mater. 2023, 35, 2307042. [Google Scholar] [CrossRef]
- Han, C.; Wei, Q.; Jiang, X.; Yao, B.; Li, H.; Chen, H.; Li, B.; Fu, P.; Zhou, W.; Ning, Z. Large-Size and Polarization-Sensitive Two-Dimensional Sn Perovskite Single Crystals. ACS Mater. Lett. 2022, 4, 987–994. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Xia, M.; Shen, H.; Wang, T.; Gao, H.; Sheng, X.; Han, Y.; Chen, Z.; Dou, L.; et al. Phase-Pure 2D Tin Halide Perovskite Thin Flakes for Stable Lasing. Science Advances 2023, 9, eadh0517. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Gong, Z.; Xia, M.; Han, Y.; Sheng, X.; Wang, T.; Wang, H.; Zhu, H.; Shi, E. Photo-Excited Carrier Behaviors of Two-Dimensional Tin Halide Perovskite Single Crystals. Cell Rep. Phys. Sci. 2024, 5, 102020. [Google Scholar] [CrossRef]
- Park, I.H.; Chu, L.; Leng, K.; Choy, Y.F.; Liu, W.; Abdelwahab, I.; Zhu, Z.; Ma, Z.; Chen, W.; Xu, Q.H.; et al. Highly Stable Two-Dimensional Tin(II) Iodide Hybrid Organic–Inorganic Perovskite Based on Stilbene Derivative. Adv. Funct. Mater. 2019, 29, 1904810. [Google Scholar] [CrossRef]
- Ding, G.; He, X.; Zhang, H.; Fu, H. Ethanol-Assisted Synthesis of Two-Dimensional Tin(Ii) Halide Perovskite Single Crystals for Amplified Spontaneous Emission. J. Mater. Chem. C Mater. 2022, 10, 10902–10907. [Google Scholar] [CrossRef]
- Liao, C.; Bernardi, S.; Bailey, C.G.; Chao, I.H.; Chien, S.Y.; Wang, G.; Sun, Y.H.; Tang, S.; Zheng, J.; Yi, J.; et al. Piperidine and Pyridine Series Lead-Free Dion-Jacobson Phase Tin Perovskite Single Crystals and Their Applications for Field-Effect Transistors. ACS Nano 2024, 18, 14176–14186. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, X.; Li, X.; Wu, F.; Zhang, F.; Wei, Q.; Yue, Z.; Luo, J.; Liu, X. Nonlinear Optical Switching in a Tin-Based Multilayered Halide Perovskite Activated by Stereoactive Lone Pairs and Confined Rotators. Inorg. Chem. 2024, 63, 2275–2281. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Mao, X.; Cheng, P.; Yang, Y.; Yang, S.; Wumaier, T.; Deng, W.; Han, K. Bismuth Doped Lead-Free Two-Dimensional Tin Based Halide Perovskite Single Crystals. J. Energy Chem. 2019, 36, 1–6. [Google Scholar] [CrossRef]
- Mhiri, A.; Krichen, F.; Oueslati, A.; Lhoste, J.; Goutenoire, F.; Gargouri, M.; Bulou, A. Synthesis, Structural Characterization and Spectroscopic Studies of Bis Tetramethylammonium Hexabromostannate [N(CH3)4]2SnBr6. J. Alloys Compd. 2019, 772, 546–556. [Google Scholar] [CrossRef]
- Dang, Y.; Zhong, C.; Zhang, G.; Ju, D.; Wang, L.; Xia, S.; Xia, H.; Tao, X. Crystallographic Investigations into Properties of Acentric Hybrid Perovskite Single Crystals NH(CH3)3SnX3 (X = Cl, Br). Chem. Mater. 2016, 28, 6968–6974. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, H.; Yin, J.; Zhang, X. Growth, Structural, Optical and Electronic Transport Properties of Tetragonal CH3NH3SnBr3 Perovskite Single Crystals. Dalton Trans. 2022, 51, 4623–4626. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, M.; Jiang, X.; Lv, P.; Liu, X.; Chen, Z.; Tao, X. Acquiring Bulk Photovoltaic Effect in One-Dimensional Sn-Based Perovskite Single Crystals by Nonlinear Organic Diamine. ACS Mater. Lett. 2024, 6, 115–122. [Google Scholar] [CrossRef]
- Tao, K.; Li, Q.; Yan, Q. 1D Tin(II)-Based Chiral Hybrid Perovskite Single Crystals with Extremely Distorted Inorganic Chains for Second Harmonic Generation. Adv. Opt. Mater. 2024, 12, 2400018. [Google Scholar] [CrossRef]
- Sun, Q.; Gu, A.; Yu, H.; Shen, Y.; Wang, M. A Single Crystal Derived Precursor for Improving the Performance of CsSnI3 Perovskite Solar Cells. J. Mater. Chem. A Mater. 2023, 11, 17292–17297. [Google Scholar] [CrossRef]
- Peán, E.V.; Dimitrov, S.; De Castro, C.S.; Davies, M.L. Interpreting Time-Resolved Photoluminescence of Perovskite Materials. Phys. Chem. Chem. Phys. 2020, 22, 28345–28358. [Google Scholar] [CrossRef]
- López-Fernández, I.; Valli, D.; Wang, C.Y.; Samanta, S.; Okamoto, T.; Huang, Y.T.; Sun, K.; Liu, Y.; Chirvony, V.S.; Patra, A.; et al. Lead-Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospective. Adv. Funct. Mater. 2024, 34, 2307896. [Google Scholar] [CrossRef]
- Awais, M.; Kirsch, R.L.; Yeddu, V.; Saidaminov, M.I. Tin Halide Perovskites Going Forward: Frost Diagrams Offer Hints. ACS Mater. Lett. 2021, 3, 299–307. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Huang, W.; Zuo, Y.; Cheng, J. A Systematical Study on Bands and Defects of CsBX3 (B = Pb, Sn, Ge, X = Cl, Br, I) Perovskite Based on First Principles. Molecules 2024, 29, 2479. [Google Scholar] [CrossRef]
- Mao, X.; Sun, L.; Wu, T.; Chu, T.; Deng, W.; Han, K. First-Principles Screening of All-Inorganic Lead-Free ABX3 Perovskites. J. Phys. Chem. C 2018, 122, 7670–7675. [Google Scholar] [CrossRef]
- Goyal, A.; McKechnie, S.; Pashov, D.; Tumas, W.; Van Schilfgaarde, M.; Stevanović, V. Origin of Pronounced Nonlinear Band Gap Behavior in Lead-Tin Hybrid Perovskite Alloys. Chem. Mater. 2018, 30, 3920–3928. [Google Scholar] [CrossRef]
- Chen, S.; Bimenyimana, T.; Guli, M. First-Principles Study on the Electronic Properties of Perovskites MASnaPb(1−a)XbY(3−b) (X, Y = Cl, Br, I). Results Phys. 2019, 14, 102408. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of P-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Chung, I.; Song, J.H.; Im, J.; Androulakis, J.; Malliakas, C.D.; Li, H.; Freeman, A.J.; Kenney, J.T.; Kanatzidis, M.G. CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions. J. Am. Chem. Soc. 2012, 134, 8579–8587. [Google Scholar] [CrossRef]
- Kahmann, S.; Nazarenko, O.; Shao, S.; Hordiichuk, O.; Kepenekian, M.; Even, J.; Kovalenko, M.V.; Blake, G.R.; Loi, M.A. Negative Thermal Quenching in FASnI3 Perovskite Single Crystals and Thin Films. ACS Energy Lett. 2020, 5, 2512–2519. [Google Scholar] [CrossRef]
- Seki, S.; Saeki, A.; Sakurai, T.; Sakamaki, D. Charge Carrier Mobility in Organic Molecular Materials Probed by Electromagnetic Waves. Phys. Chem. Chem. Phys. 2014, 16, 11093–11113. [Google Scholar] [CrossRef] [PubMed]
- Ricciarelli, D.; Meggiolaro, D.; Ambrosio, F.; De Angelis, F. Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation. ACS Energy Lett. 2020, 5, 2787–2795. [Google Scholar] [CrossRef]
- Milot, R.L.; Klug, M.T.; Davies, C.L.; Wang, Z.; Kraus, H.; Snaith, H.J.; Johnston, M.B.; Herz, L.M. The Effects of Doping Density and Temperature on the Optoelectronic Properties of Formamidinium Tin Triiodide Thin Films. Adv. Mater. 2018, 30, 1804506. [Google Scholar] [CrossRef] [PubMed]
- Lanzetta, L.; Gregori, L.; Hernandez, L.H.; Sharma, A.; Kern, S.; Kotowska, A.M.; Emwas, A.H.; Gutiérrez-Arzaluz, L.; Scurr, D.J.; Piggott, M.; et al. Dissociative Host-Dopant Bonding Facilitates Molecular Doping in Halide Perovskites. ACS Energy Lett. 2023, 8, 2858–2867. [Google Scholar] [CrossRef]
- Xu, P.; Chen, S.; Xiang, H.J.; Gong, X.G.; Wei, S.H. Influence of Defects and Synthesis Conditions on the Photovoltaic Performance of Perovskite Semiconductor CsSnI3. Chem. Mater. 2014, 26, 6068–6072. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.J.; Ren, Y.; Yu, C.; Shum, K. Schottky Solar Cells Based on CsSnI 3 Thin-Films. Appl. Phys. Lett. 2012, 101, 093901. [Google Scholar] [CrossRef]
- Shum, K.; Chen, Z.; Qureshi, J.; Yu, C.; Wang, J.J.; Pfenninger, W.; Vockic, N.; Midgley, J.; Kenney, J.T. Synthesis and Characterization of CsSnI3 Thin Films. Appl. Phys. Lett. 2010, 96, 221903. [Google Scholar] [CrossRef]
- Filippetti, A.; Kahmann, S.; Caddeo, C.; Mattoni, A.; Saba, M.; Bosin, A.; Loi, M.A. Fundamentals of Tin Iodide Perovskites: A Promising Route to Highly Efficient, Lead-Free Solar Cells. J. Mater. Chem. A Mater. 2021, 9, 11812–11826. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Xiao, Y.; Shen, L.; Ding, L. Advances in Perovskite Photodetectors. InfoMat 2020, 2, 1247–1256. [Google Scholar] [CrossRef]
- Zhang, F.; Ma, Z.; Shi, Z.; Chen, X.; Wu, D.; Li, X.; Shan, C. Recent Advances and Opportunities of Lead-Free Perovskite Nanocrystal for Optoelectronic Application. Energy Mater. Adv. 2021, 2021, 5198145. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, M.; Dong, Y.; Zou, C.; Pan, S.; Xu, Q.; Yang, Y.; Wang, S.; Zhang, L. Enabling Robust Broad-Spectrum Photodetection with Ultra-High Responsivity through Vapor Growth of 2D All-Inorganic Lead-Free Cs2SnI6 Perovskites. Opt. Mater. 2024, 153, 115561. [Google Scholar] [CrossRef]
- Kumar, M.H.; Dharani, S.; Leong, W.L.; Boix, P.P.; Prabhakar, R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; et al. Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized through Vacancy Modulation. Adv. Mater. 2014, 26, 7122–7127. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Stoumpos, C.C.; Cao, D.H.; Chang, R.P.H.; Kanatzidis, M.G. Lead-Free Solid-State Organic-Inorganic Halide Perovskite Solar Cells. Nat. Photonics 2014, 8, 489–494. [Google Scholar] [CrossRef]
- Noel, N.K.; Stranks, S.D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.A.; Sadhanala, A.; Eperon, G.E.; Pathak, S.K.; Johnston, M.B.; et al. Lead-Free Organic-Inorganic Tin Halide Perovskites for Photovoltaic Applications. Energy Environ. Sci. 2014, 7, 3061–3068. [Google Scholar] [CrossRef]
- Chen, L.J.; Lee, C.R.; Chuang, Y.J.; Wu, Z.H.; Chen, C. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application. J. Phys. Chem. Lett. 2016, 7, 5028–5035. [Google Scholar] [CrossRef]
- Wang, K.; Yang, D.; Wu, C.; Shapter, J.; Priya, S.; Cehms, V. Mono-Crystalline Perovskite Photovoltaics toward Ultrahigh Efficiency? Joule 2019, 3, 311–316. [Google Scholar] [CrossRef]
- Dong, Q.; Song, J.; Fang, Y.; Shao, Y.; Ducharme, S.; Huang, J. Lateral-Structure Single-Crystal Hybrid Perovskite Solar Cells via Piezoelectric Poling. Adv. Mater. 2016, 28, 2816–2821. [Google Scholar] [CrossRef]
- Zhou, C.; Han, M.; Xiao, Y.; Tan, W.; Jin, X.; Wu, X.; Yang, Y.; Zhu, S.; Lin, H.; Lin, S.; et al. Lead-Free Perovskites and Derivatives Enable Direct and Scintillation-Type X-Ray Detection. Mater. Sci. Eng. R Rep. 2023, 156, 100756. [Google Scholar] [CrossRef]
- Zhang, J.; Han, S.; Liu, X.; Wu, Z.; Ji, C.; Sun, Z.; Luo, J. A Lead-Free Perovskite-like Hybrid with above-Room-Temperature Switching of Quadratic Nonlinear Optical Properties. Chem. Commun. 2018, 54, 5614–5617. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Shu, X.; Zeng, Y.; Liu, Q.Y.; Du, Z.Y.; He, C.T.; Zhang, W.X.; Chen, X.M. Molecule-Based Nonlinear Optical Switch with Highly Tunable on-off Temperature Using a Dual Solid Solution Approach. Nat. Commun. 2020, 11, 2752. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, Y.T.; Yang, F.; Li, M.; Zhang, Z.; Pascual, J.; Wang, Z.K.; Wei, S.Z.; Zhao, X.Y.; Liu, H.R.; et al. Biotoxicity of Halide Perovskites in Mice. Adv. Mater. 2024, 36, 2306860. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, I.; Elkhouly, K.; Annavarapu, N.; Hamdad, S.; Gonzalez, M.C.; Genoe, J.; Gehlhaar, R.; Heremans, P. Toward Thin-Film Laser Diodes with Metal Halide Perovskites. Adv. Mater. 2024; Early View. e2314193. [Google Scholar] [CrossRef]
- Gong, J.; Darling, S.B.; You, F. Perovskite Photovoltaics: Life-Cycle Assessment of Energy and Environmental Impacts. Energy Environ. Sci. 2015, 8, 1953–1968. [Google Scholar] [CrossRef]
- Prince, K.J.; Mirletz, H.M.; Gaulding, E.A.; Wheeler, L.M.; Kerner, R.A.; Zheng, X.; Schelhas, L.T.; Tracy, P.; Wolden, C.A.; Berry, J.J.; et al. Sustainability Pathways for Perovskite Photovoltaics. Nat. Mater. 2024. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Stranks, S.D.; You, F. Life Cycle Assessment of Recycling Strategies for Perovskite Photovoltaic Modules. Nat. Sustain. 2021, 4, 821–829. [Google Scholar] [CrossRef]
- Rossi, F.; Rotondi, L.; Stefanelli, M.; Sinicropi, A.; Vesce, L.; Parisi, M.L. Comparative Life Cycle Assessment of Different Fabrication Processes for Perovskite Solar Mini-Modules. EPJ Photovolt. 2024, 15, 20. [Google Scholar] [CrossRef]
- Alberola-Borràs, J.A.; Baker, J.A.; De Rossi, F.; Vidal, R.; Beynon, D.; Hooper, K.E.A.; Watson, T.M.; Mora-Seró, I. Perovskite Photovoltaic Modules: Life Cycle Assessment of Pre-Industrial Production Process. iScience 2018, 9, 542–551. [Google Scholar] [CrossRef]
- Yan, J.; Stickel, L.S.; van den Hengel, L.; Wang, H.; Anusuyadevi, P.R.; Kooijman, A.; Liu, X.; Ibrahim, B.; Mol, A.; Taheri, P.; et al. Vacuum Deposited Perovskites with a Controllable Crystal Orientation. J. Phys. Chem. Lett. 2023, 14, 8787–8795. [Google Scholar] [CrossRef]
Single Crystal Sn Perovskites | Band Gap (eV) | References |
---|---|---|
CsSnI3 (γ-phase) | 1.3 | [60] |
CH3NH3SnI3, CH(NH2)2SnI3 | 1.15, 1.4 | [26] |
NH(CH3)3SnCl3, NH(CH3)3SnBr3 | 3.59, 2.76 | [47] |
MASnBr3 MAPb0.74Sn0.26Br3, MAPb0.68Sn0.32Br3, MAPb0.39Sn0.61Br3 | 2.02 1.88 to 1.77 | [27] |
DMASnI3 (DMA-CH3NH2CH3+) | 2.48 to 1.32 | [24] |
Cs2SnCl6−xBrx (x-0 to 6) | 4.66 to 3.34 (x-0 to 6) | [28] |
PEA2SnBr4 Bi doped PEA2SnBr4 (0 to 20%) | 2.60 2.63 to 2.59 | [45] |
CsSnxPb1−xBr3 (0 ≤ x ≤ 1) | 1.74 to 1.62 | [29] |
FASnI3 | 1.25 | [61] |
Tetragonal MASnBr3 | 2.07 | [48] |
(FASnI3)0.1(MAPbI3)0.9 | 1.35 | [36] |
Cs(Pb0.75Sn0.25)(Br1.00Cl2.00) | 1.84 to 2.42 | [31] |
(C8H9F3N)2Pb0.5Sn0.5I4, (C8H9F3N)2SnI4 | 1.94, 2.02 | [25] |
(C13H16N2)Sn2I6 | 2.61 | [49] |
(R/S-α-PEA)SnCl3, (R/S-α-PEA)SnBr3 | 3.70, 3.23 | [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhardwaj, A.; Marongiu, D.; Demontis, V.; Simbula, A.; Quochi, F.; Saba, M.; Mura, A.; Bongiovanni, G. Single Crystal Sn-Based Halide Perovskites. Nanomaterials 2024, 14, 1444. https://doi.org/10.3390/nano14171444
Bhardwaj A, Marongiu D, Demontis V, Simbula A, Quochi F, Saba M, Mura A, Bongiovanni G. Single Crystal Sn-Based Halide Perovskites. Nanomaterials. 2024; 14(17):1444. https://doi.org/10.3390/nano14171444
Chicago/Turabian StyleBhardwaj, Aditya, Daniela Marongiu, Valeria Demontis, Angelica Simbula, Francesco Quochi, Michele Saba, Andrea Mura, and Giovanni Bongiovanni. 2024. "Single Crystal Sn-Based Halide Perovskites" Nanomaterials 14, no. 17: 1444. https://doi.org/10.3390/nano14171444
APA StyleBhardwaj, A., Marongiu, D., Demontis, V., Simbula, A., Quochi, F., Saba, M., Mura, A., & Bongiovanni, G. (2024). Single Crystal Sn-Based Halide Perovskites. Nanomaterials, 14(17), 1444. https://doi.org/10.3390/nano14171444