A Theoretical Study of the Effects of Co-Doping Ions at K and Nb Sites on the Properties of KNbO3 Nanoparticles
Abstract
:1. Introduction
2. The Model and Method
3. Numerical Results and Discussion
3.1. Size Dependence of the Magnetization M and Polarization P in KNO
3.2. Effects of Ion Doping at Rb or K Sites on Magnetization, Polarization, and Band Gap in KNO NPs
3.3. Co-Doping Effects with Different Ions at Both K and Nb Sites on Various Properties of KNO NPs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Min, K.; Huang, F.; Lu, X.; Kan, Y.; Zhang, J.; Peng, S.; Liu, Y.; Su, J.; Zhang, C.; Liu, Z.; et al. Room-temperature multiferroic properties of Co-doped KNbO3 ceramics. Solid State Commun. 2012, 152, 304–306. [Google Scholar] [CrossRef]
- Li, H.; Hao, Y.; Lin, Z.; He, X.; Cai, J.; Gong, X.; Gu, Y.; Zhang, R.; Cheng, H.; Zhang, B. (K,Na)NbO3 lead-free piezoceramics prepared by microwave sintering and solvothermal powder synthesis. Solid State Commun. 2022, 353, 114871. [Google Scholar] [CrossRef]
- Yoneda, Y.; Ohara, K.; Nagata, H. Local structure and phase transitions of KNbO3. Jpn. J. Appl. Phys. 2018, 57, 11UB07. [Google Scholar] [CrossRef]
- Song, G.; Chen, L.; Xing, L.; Zhang, K.; Wu, Z.; Yang, H.; Zhang, N. Effect of Fe3+ doping on the ferrielectric and magnetic properties of KNbO3 ceramics. Physica B 2021, 621, 413308. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ramraj, R.B.; Ramamurthi, K.; Raman, S. Influence of Cr-doping on structural, morphological, optical, dielectric and magnetic properties of KNbO3 ceramics. Mater. Chem. Phys. 2018, 213, 130–139. [Google Scholar] [CrossRef]
- Astudillo, J.A.; Dionizio, S.A.; Izquierdo, J.L.; Moran, O.; Heiras, J.; Bolanos, G. Magnetic and electrical properties in Co-doped KNbO3 bulk samples. AIP Adv. 2018, 8, 055817. [Google Scholar] [CrossRef]
- Sun, S.-Y.; Ge, Y.-Y.; Zhao, Y.-J.; Xie, Z.P. Synthesis of Er3+ doped KNbO3 nanocrystals and nanoceramics with outstanding up-conversion luminescence behaviors. J. Alloys Compd. 2021, 854, 156738. [Google Scholar] [CrossRef]
- Song, B.; Wang, X.; Xin, C.; Zhang, L.; Song, B.; Zhang, Y.; Wang, Y.; Wang, J.; Liu, Z.; Sui, Y.; et al. Multiferroic properties of Ba/Ni co-doped KNbO3 with narrow band-gap. J. Alloys Compd. 2017, 703, 67–72. [Google Scholar] [CrossRef]
- Zhang, X.; Qi, R.; Dong, S.; Yang, S.; Jing, C.; Sun, L.; Chen, Y.; Hong, X.; Yang, P.; Yue, F.; et al. Modulation of Ferroelectric and Optical Properties of La/Co-Doped KNbO3 Ceramics. Nanomaterials 2021, 11, 2273. [Google Scholar] [CrossRef]
- Tiwari, R.P.; Birajdar, B. Ferroelectric, magnetic and optical properties of Ba and Sc co-doped KNbO3. AIP Conf. Proc. 2018, 1942, 030014. [Google Scholar] [CrossRef]
- Zamarron-Montes, L.; Espinosa-Gonzalez, D.; Espinosa-Magana, F. Study of electronic and magnetic properties of Mn-doped KNbO3: A first-principles approach. Solid State Commun. 2024, 377, 115394. [Google Scholar] [CrossRef]
- Apostolov, A.T.; Apostolova, I.N.; Wesselinowa, J.M. Doping Effects on the Multiferroic Properties of KNbO3 Nanoparticles. Magnetochemistry 2024, 10, 19. [Google Scholar] [CrossRef]
- Blinc, R.; Zeks, B. Soft Modes in Ferroelectric and Antiferroelectrics; North-Holland: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Pirc, R.; Blinc, R. Off-center Ti model of barium titanate. Phys. Rev. B 2004, 70, 134107. [Google Scholar] [CrossRef]
- Tserkovnikov, Y.A. Decoupling of chains of equations for two-time Green’s functions. Theor. Math. Phys. 1971, 7, 250–261. [Google Scholar] [CrossRef]
- Gutowski, M. Antisymmetric exchange interactions in Cr3+Cr3+ pairs in the inverse spinel LiGa5O8. Phys. Rev. B 1978, 18, 5984. [Google Scholar] [CrossRef]
- Orlov, Y.S.; Nikolaev, S.; Gavrichkov, V.A.; Ovchinnikov, S.G. Exchange interaction between the high spin Co3+ states in LaCoO3. Comp. Mater. Sci. 2022, 204, 111134. [Google Scholar] [CrossRef]
- Gilyazov, L.R.; Eremin, M.V.; Nikitin, S.I.; Yusupov, R.V.; Dejnek, A.; Trepakov, V.A. Selective Laser Spectroscopy of Mn4+Mn4+ Pair Centers in SrTiO3 Crystal. Opt. Spectr. 2014, 116, 811–817. [Google Scholar] [CrossRef]
- Vikhnin, V.S.; Asatryan, H.R.; Zakharchenya, R.I.; Kutsenko, A.B.; Kapphan, S.E. Magnetic resonance in PbxNbyOz-ceramics as a system containing chemical fluctuation regions. Solid State Phys. 2005, 47, 1535–1539. [Google Scholar] [CrossRef]
- Diaz-Moreno, C.; Farias, R.; Hurtado-Macias, A.; Elizalde-Galindo, J.; Hernandez-Paz, J. Multiferroic response of nanocrystalline lithium niobate. J. Appl. Phys. 2012, 111, 07D907. [Google Scholar] [CrossRef]
- Golovina, I.S.; Shanina, B.D.; Kolesnik, S.P.; Geifman, I.N.; Andriiko, A.A. Magnetic properties of nanocrystalline KNbO3. J. Appl. Phys. 2013, 114, 174106. [Google Scholar] [CrossRef]
- Dudhe, C.; Khambadkar, S.; Koinkar, P.M. Ferroelectric behavior in nanocrystalline KNbO3 synthesized by a modified polymerized complex method. Ferroelectrics 2018, 531, 157–166. [Google Scholar] [CrossRef]
- Ge, H.H.; Huang, Y.; Hou, Y.; Xiao, H.; Zhu, M. Size dependence of the polarization and dielectric properties of KNbO3 nanoparticles. RSC Adv. 2014, 4, 23344–23350. [Google Scholar] [CrossRef]
- Lee, G.; Shin, Y.-H.; Son, J.Y. Strain-Induced High Polarization of a KNbO3 Thin Film on a Single Crystalline Rh Substrate. J. Am. Ceram. Soc. 2012, 95, 2773–2776. [Google Scholar] [CrossRef]
- Murzina, T.V.; Savinov, S.A.; Ezhov, A.A.; Aktsipetrov, O.A.; Korsakov, I.E.; Bolshakov, I.A.; Kaul, A.R. Ferroelectric properties in KNbO3 thin films probed by optical second harmonic generation. Appl. Phys. Lett. 2006, 89, 062907. [Google Scholar] [CrossRef]
- Astudillo, J.A.; Izquierdo, J.L.; Gomez, A.; Bolanos, G.; Moran, O. Ferromagnetism at room temperature in Co-doped KNbO3 bulk samples. J. Magn. Magn. Mater. 2014, 373, 86–89. [Google Scholar] [CrossRef]
- Korde, V.; Patil, N.; Shamkuwar, S. A critical field study of ferroelectric domain in Al-doped KNbO3 single crystal. Ceram. Intern. 2022, 48, 9172–9179. [Google Scholar] [CrossRef]
- Wang, P.; Shen, H.; Xia, K.; Zong, W.; Tan, R. Ferroelectric Properties of KNbO3 Doped with Na: First-Principles Calculations. J. Phys. Conf. Ser. 2011, 2209, 012003. [Google Scholar] [CrossRef]
- Trepakov, V.A.; Savinov, M.L.; Zelezny, V.; Syrnikov, P.P.; Deyneka, A.G.; Jastrabik, L. Li doping effect on properties and phase transfomations of KNbO3. J. Eur. Ceram. Soc. 2007, 27, 4071–4073. [Google Scholar] [CrossRef]
- Yu, L.; Deng, H.; Zhou, W.; Yang, P.; Chu, J. Band gap engineering and magnetic switching in a novel perovskite (1 − x)KNbO3-xBaNb1/2Fe1/2O3. J. Mater. Lett. 2017, 202, 39–43. [Google Scholar] [CrossRef]
- Si, S.F.; Deng, H.M.; Zhou, W.L.; Wang, T.T.; Yang, P.X.; Chu, J.H. Modified structure and optical band-gap in perovskite ferroelectric (1 − x)KNbO3-xBaCo1/3Nb2/3O3 ceramics. Ceram. Int. 2018, 44, 14638–14644. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Xu, F.; Xu, M.J.; Li, L.; Lu, Y.M.; Li, M.K.; Li, P.; Li, M.; Chang, G.; He, Y.B. Lead-free perovskite ferroelectric thin films with narrow direct band gap suitable for solar cell applications. Mater. Res. Bull. 2017, 95, 56–60. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolov, A.T.; Apostolova, I.N.; Wesselinowa, J.M. A Theoretical Study of the Effects of Co-Doping Ions at K and Nb Sites on the Properties of KNbO3 Nanoparticles. Nanomaterials 2024, 14, 1473. https://doi.org/10.3390/nano14181473
Apostolov AT, Apostolova IN, Wesselinowa JM. A Theoretical Study of the Effects of Co-Doping Ions at K and Nb Sites on the Properties of KNbO3 Nanoparticles. Nanomaterials. 2024; 14(18):1473. https://doi.org/10.3390/nano14181473
Chicago/Turabian StyleApostolov, Angel T., Iliana N. Apostolova, and Julia M. Wesselinowa. 2024. "A Theoretical Study of the Effects of Co-Doping Ions at K and Nb Sites on the Properties of KNbO3 Nanoparticles" Nanomaterials 14, no. 18: 1473. https://doi.org/10.3390/nano14181473
APA StyleApostolov, A. T., Apostolova, I. N., & Wesselinowa, J. M. (2024). A Theoretical Study of the Effects of Co-Doping Ions at K and Nb Sites on the Properties of KNbO3 Nanoparticles. Nanomaterials, 14(18), 1473. https://doi.org/10.3390/nano14181473