Vortex Domain Wall Thermal Pinning and Depinning in a Constricted Magnetic Nanowire for Storage Memory Nanodevices
Abstract
:1. Introduction
2. Theoretical Model
3. Results and Discussion
3.1. VDW Thermal Transformation
3.2. VDW Thermal Dynamics
3.3. VDW Thermal Pinning and Depinning
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Parkin, S.S.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Thomas, L.; Moriya, R.; Rettner, C.; Parkin, S.S. Current-controlled magnetic domain-wall nanowire shift register. Science 2008, 320, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Allwood, D.A.; Xiong, G.; Faulkner, C.C.; Atkinson, D.P.D.; Cowburn, R.P. Magnetic domain-wall logic. Science 2005, 309, 1688–1692. [Google Scholar] [CrossRef] [PubMed]
- Thiaville, A.; Nakatani, Y.; Miltat, J.; Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 2005, 69, 990. [Google Scholar] [CrossRef]
- Hayashi, M.; Thomas, L.; Moriya, R.; Rettner, C.; Parkin, S.S.P. Current-driven domain wall veloci-ties exceeding the spin angular momentum transfer rate in permalloy nanowires. Phys. Rev. Lett. 2008, 98, 037204. [Google Scholar] [CrossRef]
- Tveten, E.G.; Qaiumzadeh, A.; Tretiakov, O.A.; Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 2013, 110, 127208. [Google Scholar] [CrossRef]
- Shiino, T.; Oh, S.; Haney, P.M.; Lee, H.-W.; Go, G.; Park, B.-G.; Lee, K.-J. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 2016, 117, 087203. [Google Scholar] [CrossRef]
- Sampaio, J.; Cros, V.; Rohart, S.; Thiaville, A.; Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 2013, 8, 839–844. [Google Scholar] [CrossRef]
- Tomasello, R.; Martinez, E.; Zivieri, R.; Torres, L.; Carpentieri, M.; Finocchio, G. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 2014, 4, 6784. [Google Scholar] [CrossRef]
- Meier, G.; Bolte, M.; Eiselt, R.; Krüger, B.; Kim, D.H.; Fischer, P. Direct imaging of stochastic domain-wall motion driven by nanosecond current pulses. Phys. Rev. Lett. 2007, 98, 187202. [Google Scholar] [CrossRef]
- Nakatani, Y.; Thiaville, A.; Miltat, J. Head-to-head domain walls in soft nano-strips: A refined phase dia-gram. J. Magn. Magn. Mater. 2005, 290, 750–753. [Google Scholar] [CrossRef]
- Beach, G.S.; Nistor, C.; Knutson, C.; Tsoi, M.; Erskine, J.L. Dynamics of field-driven domain-wall propaga-tion in ferromagnetic nanowires. Nat. Mater. 2005, 4, 741–744. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, A.; Ono, T.; Nasu, S.M.K.; Mibu, K.; Shinjo, T. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 2004, 92, 077205. [Google Scholar] [CrossRef] [PubMed]
- Kläui, M.; Jubert, P.O.; Allenspach, R.; Bischof, A.; Bland, J.A.C.; Faini, G.; Vouille, C. Direct observation of domain-wall configurations transformed by spin currents. Phys. Rev. Lett. 2005, 95, 026601. [Google Scholar] [CrossRef] [PubMed]
- Ono, T.; Miyajima, H.; Shigeto, K.; Mibu, K.; Hosoito, N.; Shinjo, T. Propagation of a magnetic domain wall in a submicrometer magnetic wire. Science 1999, 284, 468–470. [Google Scholar] [CrossRef]
- Yang, S.H.; Ryu, K.S.; Parkin, S. Domain-wall velocities of up to 750 ms−1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 2015, 10, 221–226. [Google Scholar] [CrossRef]
- Slonczewski, J.C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 1996, 159, L1–L7. [Google Scholar] [CrossRef]
- Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 1996, 54, 9353. [Google Scholar] [CrossRef]
- Yuan, H.Y.; Wang, X.R. Domain wall pinning in notched nanowires. Phys. Rev. B 2014, 89, 054423. [Google Scholar] [CrossRef]
- Kurniawan, C.; Djuhana, D. Current driven domain wall depinning in notched Permalloy nanowires. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1711, p. 020001. [Google Scholar] [CrossRef]
- Brandão, J.; Novak, R.L.; Lozano, H.; Soledade, P.R.; Mello, A.; Garcia, F.; Sampaio, L.C. Control of the mag-netic vortex chirality in Permalloy nanowires with asymmetric notches. J. Appl. Phys. 2014, 9, 116. [Google Scholar] [CrossRef]
- Djuhana, D.; Kurniawan, C.; Kim, D.H. Micromagnetic study of domain wall depinning driven by nano-second current pulse in notched Permalloy nanowires. Curr. Appl. Phys. 2018, 18, 236–240. [Google Scholar] [CrossRef]
- Shiu, D.S.; Hong, Y.; Su, C.H.; Lai, K.F.; Wu, J.C.; Lin, L.; Horng, L. Depinning field of vortex domain wall in wide magnetic wires with asymmetric notches using magneto-optical kerr effect microscopy. J. Elec-Tronic Mater. 2019, 48, 1363–1367. [Google Scholar] [CrossRef]
- Kurniawan, C.; Soegijono, B.; Djuhana, D. Investigation of notch dept effect on domain wall depinning in ferromagnetic nanowires by micromagnetic simulation. IOP Mater. Sci. Eng. 2019, 553, 012012. [Google Scholar] [CrossRef]
- Al Bahri, M. Controlling domain wall thermal stability switching in magnetic nanowires for storage memory nanodevices. J. Magn. Magn. Mater. 2022, 543, 168611. [Google Scholar] [CrossRef]
- Al Bahri, M.; Al Harthy, T. Vortex Domain Wall Thermal Stability in Magnetic Nanodevices with In-Plane Magnetic Anisotropy. Phys. Status Solidi A 2023, 220, 2200586. [Google Scholar] [CrossRef]
- Seo, S.M.; Kim, K.W.; Ryu, J.; Lee, H.W.; Lee, K.J. Current-induced motion of a transverse magnetic domain wall in the presence of spin Hall effect. Appl. Phys. Lett. 2012, 101, 022405. [Google Scholar] [CrossRef]
- Ai, J.H.; Miao, B.F.; Sun, L.; You, B.; Hu, A.; Ding, H.F. Current-induced domain wall motion in permalloy nanowires with a rectangular cross-section. J. Appl. Phys. 2011, 110, 093913. [Google Scholar] [CrossRef]
- Wieser, R.; Nowak, U.; Usadel, K.D. Domain wall mobility in nanowires: Transverse versus vortex wall. Phys. Rev. B 2004, 69, 064401. [Google Scholar] [CrossRef]
- Malinowski, G.; Longa, F.D.; Rietjens, J.H.H.; Paluskar, P.V.; Huijink, R.; Swagten, H.J.M.; Koopmans, B. Control of speed and efficiency of ultrafast demagnetization by direct transfer of spin angular momentum. Nat. Phys. 2008, 4, 855–858. [Google Scholar] [CrossRef]
- Al Bahri, M. Geometrical Confinement of Vortex Domain Wall in Constricted Magnetic Nanowire with In-Plane Magnetic Anisotropy. IEEE Trans. Magn. 2021, 57, 3053090. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.S.L. Generalization of the Landau-Lifshitz-Gilbert equation for conducting ferro-magnets. Phys. Rev. Lett. 2009, 102, 086601. [Google Scholar] [CrossRef] [PubMed]
- Tatara, G.; Kohno, H. Theory of current-driven domain wall motion: Spin transfer versus momentum transfer. Phys. Rev. Lett. 2004, 92, 086601. [Google Scholar] [CrossRef] [PubMed]
- Schieback, C.; Hinzke, D.; Kläui, M.; Nowak, U.; Nielaba, P. Temperature dependence of the current-induced domain wall motion from a modified Landau-Lifshitz-Bloch equation. Phys. Rev. B—Condens. Matter Mater. Phys. 2009, 80, 21440. [Google Scholar] [CrossRef]
- Brataas, A.; Bauer, G.E.; Kelly, P.J. Non-collinear magnetoelectronics. Phys. Rep. 2006, 427, 157–255. [Google Scholar] [CrossRef]
- Kent, A.D.; Rüdiger, U.; Yu, J.; Thomas, L.; Parkin, S.S. Magnetoresistance, micromagnetism, and domain wall effects in epitaxial Fe and Co structures with stripe domains. J. Appl. Phys. 1999, 85, 5243–5248. [Google Scholar] [CrossRef]
- Al Bahri, M. Vortex domain wall dynamics in stepped magnetic nanowire with in-plane magnetic anisotropy. J. Magn. Magn. Mater. 2020, 515, 167293. [Google Scholar] [CrossRef]
- Cowburn, R.P.; Koltsov, D.K.; Adeyeye, A.O.; Welland, M.E.; Tricker, D.M. Single-domain circular nano-magnets. Phys. Rev. Lett. 1999, 83, 1042. [Google Scholar] [CrossRef]
- Al Bahri, M.; Borie, B.; Jin, T.L.; Sbiaa, R.; Kläui, M.; Piramanayagam, S.N. Staggered magnetic nanowire de-vices for effective domain-wall pinning in racetrack memory. Phys. Rev. Appl. 2019, 11, 024023. [Google Scholar] [CrossRef]
- Donahue, M.; Porter, D.G. OOMMF User’s Guide, Version 1.0; Interagency Report NISTIR 6376; Technical 427 Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1999. Available online: https://math.nist.gov/oommf/ (accessed on 15 July 2024).
- Zhang, S.; Li, Z. Roles of Nonequilibrium Conduction Electrons on the Magnetization Dynamics of Ferro-magnets. Phys. Rev. Lett. 2004, 93, 127204. [Google Scholar] [CrossRef]
- Martinez, E.; Lopez-Diaz, L.; Torres, L.; Tristan, C.; Alejos, O. Thermal effects in domain wall motion: Micromagnetic simulations and analytical model. Phys. Rev. B—Condens. Matter Mater. Phys. 2007, 75, 174409. [Google Scholar] [CrossRef]
- Bahri, A.; Al-Kamiyani, S. Thermal Effects on Domain Wall Stability at Magnetic Stepped Nanowire for Nanodevices Storage. Nanomaterials 2024, 14, 1202. [Google Scholar] [CrossRef] [PubMed]
- Thiele, A. Steady-State Motion of Magnetic Domains. Phys. Rev. Lett. 1973, 30, 230–233. [Google Scholar] [CrossRef]
- Ye, C.; Li, L.; Shu, Y.; Li, Q.; Xia, J.; Hou, Z.; Zhou, Y.; Liu, X.; Yang, Y.; Zhao, G. Generation and manipulation of skyrmions and other topological spin structures with rare metals. Rare Met. 2022, 41, 2200–2216. [Google Scholar] [CrossRef]
- Shen, L.; Xia, J.; Zhang, X.; Ezawa, M.; Tretiakov, O.A.; Liu, X.; Zhou, Y. Current-Induced Dynamics and Chaos of Antiferromagnetic Bimerons. Phys. Rev. Lett. 2020, 124, 037202. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 2016, 7, 10293. [Google Scholar] [CrossRef]
- Al Bahri, M. Chiral Dependence of Vortex Domain Wall Structure in a Stepped Magnetic Nanowire. Phys. Status Solidi A 2022, 219, 202100560. [Google Scholar] [CrossRef]
- Sbiaa, R.; Bahri, M.A.; Piramanayagam, S.N. Domain wall oscillation in magnetic nanowire with a geometri-cally confined region. J. Magn. Magn. Mater. 2018, 456, 324–328. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Bahri, M.; Al-Kamiyani, S.; Al Habsi, A.M. Vortex Domain Wall Thermal Pinning and Depinning in a Constricted Magnetic Nanowire for Storage Memory Nanodevices. Nanomaterials 2024, 14, 1518. https://doi.org/10.3390/nano14181518
Al Bahri M, Al-Kamiyani S, Al Habsi AM. Vortex Domain Wall Thermal Pinning and Depinning in a Constricted Magnetic Nanowire for Storage Memory Nanodevices. Nanomaterials. 2024; 14(18):1518. https://doi.org/10.3390/nano14181518
Chicago/Turabian StyleAl Bahri, Mohammed, Salim Al-Kamiyani, and Al Maha Al Habsi. 2024. "Vortex Domain Wall Thermal Pinning and Depinning in a Constricted Magnetic Nanowire for Storage Memory Nanodevices" Nanomaterials 14, no. 18: 1518. https://doi.org/10.3390/nano14181518
APA StyleAl Bahri, M., Al-Kamiyani, S., & Al Habsi, A. M. (2024). Vortex Domain Wall Thermal Pinning and Depinning in a Constricted Magnetic Nanowire for Storage Memory Nanodevices. Nanomaterials, 14(18), 1518. https://doi.org/10.3390/nano14181518