Improved Electromagnetic Interference Shielding Efficiency of PVDF/rGO/AgNW Composites via Low-Pressure Compression Molding and AgNW-Backfilling Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.2.1. Preparation of AgNWs
2.2.2. Preparation of Graphene Oxide (GO)
2.2.3. Preparation of PVDF@rGO@AgNWs Composite Powder
2.2.4. Preparation of PVDF/rGO/AgNWs Composites
PVDF/rGO/AgNW Composite Prepared via High-Pressure Molding
PVDF/rGO/AgNW Composite Prepared Using Low-Pressure Molding
PVDF/rGO/AgNW Composite Prepared Using Backfilling Process
2.3. Characterization
3. Results
3.1. Characterization Analysis of Raw Materials and Composite Materials
3.1.1. Characterization of rGO
3.1.2. Characterization of AgNWs
3.1.3. The Morphologies of PVDF/5rGO/4AgNW Composite Powder and PVDF/rGO/AgNW Composites
3.2. Composites’ Electrical Conductivity
3.3. EMI Shielding and Absorption Contribution
3.4. Electromagnetic Parameter Analysis
3.5. Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, D.-X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P.-G.; Wang, J.-H.; Li, Z.-M. Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2015, 25, 559–566. [Google Scholar] [CrossRef]
- Jia, L.-C.; Yan, D.-X.; Cui, C.-H.; Jiang, X.; Ji, X.; Li, Z.-M. Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. J. Mater. Chem. C 2015, 3, 9369–9378. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Z.; Song, R.; Wang, Q.; Chen, H.; Zhang, B.; Lv, H.; Wu, Z.; He, D. Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness. Sci. Bull. 2019, 64, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Kangishwar, S.; Radhika, N.; Sheik, A.A.; Chavali, A.; Hariharan, S. A comprehensive review on polymer matrix composites: Material selection, fabrication, and application. Polym. Bull. 2023, 80, 47–87. [Google Scholar] [CrossRef]
- Omana, L.; Chandran, A.; John, R.E.; Wilson, R.; George, K.C.; Unnikrishnan, N.V.; Varghese, S.S.; George, G.; Simon SM Paul, I. Recent Advances in Polymer Nanocomposites for Electromagnetic Interference Shielding: A Review. ACS Omega 2022, 7, 25921–25947. [Google Scholar] [CrossRef]
- Park, M.; Yoon, S.; Park, J.; Park, N.-H.; Ju, S.-Y. Flavin Mononucleotide-Mediated Formation of Highly Electrically Conductive Hierarchical Monoclinic Multiwalled Carbon Nanotube-Polyamide 6 Nanocomposites. ACS Nano 2020, 14, 10655–10665. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Z.; Liu, X.; Shen, X.; Zheng, Q.; Xue, Q.; Kim, J.-K. Ultralight Graphene Foam/Conductive Polymer Composites for Exceptional Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2017, 9, 9059–9069. [Google Scholar] [CrossRef]
- He, Y.-j.; Shao, Y.-w.; Xiao, Y.-y.; Yang, J.-h.; Qi, X.-d.; Wang, Y. Multifunctional Phase Change Composites Based on Elastic MXene/Silver Nanowire Sponges for Excellent Thermal/Solar/Electric Energy Storage, Shape Memory, and Adjustable Electromagnetic Interference Shielding Functions. ACS Appl. Mater. Interfaces 2022, 14, 6057–6070. [Google Scholar] [CrossRef]
- Zhang, C.J.; Pinilla, S.; McEvoy, N.; Cullen, C.P.; Anasori, B.; Long, E.; Park, S.-H.; Seral-Ascaso, A.; Shmeliov, A.; Krishnan, D.; et al. Oxidation Stability of Colloidal Two-Dimensional Titanium Carbides (MXenes). Chem. Mater. 2017, 29, 4848–4856. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, W.; Lu, X.; Wang, C. One-dimensional metallic, magnetic, and dielectric nanomaterials-based composites for electromagnetic wave interference shielding. Nano Res. 2022, 15, 9595–9613. [Google Scholar] [CrossRef]
- Chen, W.; Liu, L.-X.; Zhang, H.-B.; Yu, Z.-Z. Flexible, Transparent, and Conductive Ti3C2Tx MXene–Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding. ACS Nano 2020, 14, 16643–16653. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Su, M.; Yang, D.; Han, G.; Feng, Y.; Wang, B.; Ma, J.; Ma, J.; Liu, C.; Shen, C. Flexible MXene/Silver Nanowire-Based Transparent Conductive Film with Electromagnetic Interference Shielding and Electro-Photo-Thermal Performance. ACS Appl. Mater. Interfaces 2020, 12, 40859–40869. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Santillo, C.; Meng, Y.; Lavorgna, M. Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding. J. Mater. Chem. C 2023, 11, 859–892. [Google Scholar] [CrossRef]
- Pang, H.; Xu, L.; Yan, D.-X.; Li, Z.-M. Conductive polymer composites with segregated structures. Prog. Polym. Sci. 2014, 39, 1908–1933. [Google Scholar] [CrossRef]
- Han, Y.; Ruan, K.; Gu, J. Multifunctional Thermally Conductive Composite Films Based on Fungal Tree-like Heterostructured Silver Nanowires@Boron Nitride Nanosheets and Aramid Nanofibers. Angew. Chem. Int. Ed. 2023, 62, e202216093. [Google Scholar] [CrossRef]
- Chu, X.; Tao, J.; Li, S.; Ji, S.; Ye, C. Sandwich-Structured Silver Nanowire Transparent Conductive Films with 3H Hardness and Robust Flexibility for Potential Applications in Curved Touch Screens. Nanomaterials 2019, 9, 557. [Google Scholar] [CrossRef]
- Wang, M.; Ma, L.; Shi, J.; Li, S.; Ji, S. Fracture behaviour of silver nanowire films during shear deformation. Nanotechnology 2022, 33, 375706. [Google Scholar] [CrossRef]
- Jiang, X.C.; Xiong, S.X.; Tian, Z.A.; Chen, C.Y.; Chen, W.M.; Yu, A.B. Twinned Structure and Growth of V-Shaped Silver Nanowires Generated by a Polyol−Thermal Approach. J. Phys. Chem. C 2011, 115, 1800–1810. [Google Scholar] [CrossRef]
- Chen, J.; Yao, B.; Li, C.; Shi, G. An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 2013, 64, 225–229. [Google Scholar] [CrossRef]
- Zhang, Q.; Cui, J.; Zhao, S.; Gao, A.; Zhang, G.; Yan, Y. Regulation binary electromagnetic filler networks in segregated poly (vinylidenefluoride) composite for absorption-dominated electromagnetic interference shielding. J. Appl. Polym. Sci. 2023, 140, e53650. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Zhang, C.-H. Reduced Graphene Oxide Derived from Low-Grade Coal for High-Performance Flexible Supercapacitors with Ultrahigh Cyclability. Nanomaterials 2022, 12, 2989. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liang, Y.; He, G.; Luo, P. Simultaneously enhancing the strength, plasticity, and conductivity of copper matrix composites with graphene-coated submicron spherical copper. Nanomaterials 2022, 12, 1025. [Google Scholar] [CrossRef] [PubMed]
- Afzal, A.M.; Awais, M.; Yasmeen, A.; Iqbal, M.W.; Mumtaz, S.; Ouladsmane, M.; Usman, M. Exploring the redox characteristics of porous ZnCoS@rGO grown on nickel foam as a high-performance electrode for energy storage applications. RSC Adv. 2023, 13, 21236–21248. [Google Scholar] [CrossRef]
- Rahman, J.U.; Du, N.V.; Nam, W.H.; Shin, W.H.; Lee, K.H.; Seo, W.-S.; Kim, M.H.; Lee, S. Grain boundary interfaces controlled by reduced graphene oxide in nonstoichiometric SrTiO3-δ thermoelectrics. Sci. Rep. 2019, 9, 8624. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.-J.; Zhu, P.-L.; Yu, S.-H.; Sun, R.; Wong, C.-P.; Liao, W.-H. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding. Small 2018, 14, 1800534. [Google Scholar] [CrossRef]
- Sun, Y.; Yin, Y.; Mayers, B.T.; Herricks, T.; Xia, Y. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chem. Mater. 2002, 14, 4736–4745. [Google Scholar] [CrossRef]
- Menon, A.V.; Madras, G.; Bose, S. Phase specific dispersion of functional nanoparticles in soft nanocomposites resulting in enhanced electromagnetic screening ability dominated by absorption. Phys. Chem. Chem. Phys. 2017, 19, 467–479. [Google Scholar] [CrossRef]
- Schelkunoff, S.A. Transmission Theory of Plane Electromagnetic Waves. Proc. Inst. Radio Eng. 1937, 25, 1457–1492. [Google Scholar] [CrossRef]
- Sahoo, R.; Sundara, R.; Venkatachalam, S. Silver Nanowires Coated Nitrocellulose Paper for High-Efficiency Electromagnetic Interference Shielding. ACS Omega 2022, 7, 41426–41436. [Google Scholar] [CrossRef]
- Xu, C.; Liu, P.; Wu, Z.; Zhang, H.; Zhang, R.; Zhang, C.; Wang, L.; Wang, L.; Yang, B.; Yang, Z.; et al. Customizing Heterointerfaces in Multilevel Hollow Architecture Constructed by Magnetic Spindle Arrays Using the Polymerizing-Etching Strategy for Boosting Microwave Absorption. Adv. Sci. 2022, 9, 2200804. [Google Scholar] [CrossRef]
- Mandal, A.; Zheng, Y.; Cui, J.; Yan, Y. Flexible poly(dimethyl siloxane) composites enhanced with 3D porous interconnected three-component nanofiller framework for absorption-dominated electromagnetic shielding. J. Polym. Sci. 2021, 59, 353–365. [Google Scholar] [CrossRef]
- Kang, T.; Zhu, Z.; Zhou, W. Ultra-broadband wave-absorbing metamaterials with open-hole effect. J. Magn. Magn. Mater. 2023, 566, 170097. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Yang, S.-H.; Wang, H.-Y.; Wang, G.-S.; Sun, X.-B.; Yin, P.-G. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon 2020, 167, 485–494. [Google Scholar] [CrossRef]
- Peymanfar, R.; Selseleh-Zakerin, E.; Ahmadi, A.; Tavassoli, S.H. Architecting functionalized carbon microtube/carrollite nanocomposite demonstrating significant microwave characteristics. Sci. Rep. 2021, 11, 11932. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Zhang, H.; Zhang, D.; Deng, Y.; Shen, J.; Zeng, G. Ultrafine FeNi3 nanocrystals embedded in 3D honeycomb-like carbon matrix for high-performance microwave absorption. Nanomaterials 2020, 10, 598. [Google Scholar] [CrossRef]
- Yadav, R.S.; Anju; Jamatia, T.; Kuřitka, I.; Vilčáková, J.; Škoda, D.; Urbánek, P.; Machovský, M.; Masař, M.; Urbánek, M. Superparamagnetic ZnFe2O4 nanoparticles-reduced graphene oxide-polyurethane resin based nanocomposites for electromagnetic interference shielding application. Nanomaterials 2021, 11, 1112. [Google Scholar] [CrossRef]
- Peng, J.; Peng, Z.; Zhu, Z.; Augustine, R.; Mahmoud, M.M.; Tang, H.; Rao, M.; Zhang, Y.; Li, G.; Jiang, T. Achieving ultra-high electromagnetic wave absorption by anchoring Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on graphene sheets using microwave-assisted polyol method. Ceram. Int. 2018, 44, 21015–21026. [Google Scholar] [CrossRef]
- Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Mai, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C.; Angaiah, S.; et al. Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding. Carbon 2018, 140, 696–733. [Google Scholar] [CrossRef]
- Alamri, S.; Mulki, H.; Juraev, N.; Hassan, A.; Akhtar, M.N. Electromagnetic shielding, absorption and physicochemical evaluations of Fe3N@C nanocomposite decorated with Poly(DCBP-co-BT) for absorption application in 8–12 GHz. Mater. Today Commun. 2024, 38, 108365. [Google Scholar] [CrossRef]
- Zou, Y.; Li, S.; Hassan, A.; Mahariq, I.; Fouad, Y.; Juraev, N.; Alhadrawi, M. Facile and rapid synthesis method of dielectric nanocomposite for simultaneous enhancement of electromagnetic wave absorbing/shielding characteristics. Colloids Surf. A Physicochem. Eng. Asp. 2024, 694, 134158. [Google Scholar] [CrossRef]
- Alamri, S.; Salman, S.; Girisha, L.; Rajhi, A.A.; Mohanavel, V.; Nadeem, M.; Hassan, A.; Duhduh, A.A. Augmenting the performance of the microwave absorption and shielding features of poly(PDA-co-XY)/paraffin composite. Surf. Interfaces 2023, 41, 103277. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, Y.; Mao, Z.; Mei, X.; Zhang, Q. Improved Electromagnetic Interference Shielding Efficiency of PVDF/rGO/AgNW Composites via Low-Pressure Compression Molding and AgNW-Backfilling Strategy. Nanomaterials 2024, 14, 1531. https://doi.org/10.3390/nano14181531
Li Z, Li Y, Mao Z, Mei X, Zhang Q. Improved Electromagnetic Interference Shielding Efficiency of PVDF/rGO/AgNW Composites via Low-Pressure Compression Molding and AgNW-Backfilling Strategy. Nanomaterials. 2024; 14(18):1531. https://doi.org/10.3390/nano14181531
Chicago/Turabian StyleLi, Zhunzhun, Yaqun Li, Zhusong Mao, Xingyu Mei, and Qimei Zhang. 2024. "Improved Electromagnetic Interference Shielding Efficiency of PVDF/rGO/AgNW Composites via Low-Pressure Compression Molding and AgNW-Backfilling Strategy" Nanomaterials 14, no. 18: 1531. https://doi.org/10.3390/nano14181531
APA StyleLi, Z., Li, Y., Mao, Z., Mei, X., & Zhang, Q. (2024). Improved Electromagnetic Interference Shielding Efficiency of PVDF/rGO/AgNW Composites via Low-Pressure Compression Molding and AgNW-Backfilling Strategy. Nanomaterials, 14(18), 1531. https://doi.org/10.3390/nano14181531