Quantum Cone—A Nano-Source of Light with Dispersive Spectrum Distributed along Height and in Time
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Zhang, Z.; Ding, J.; Xu, Y.; Chen, G.; Liu, J. Diamond-like carbon structure-doped carbon dots: A new class of self-quenching-resistant solid-state fluorescence materials toward light-emitting diodes. Carbon 2019, 149, 342–349. [Google Scholar] [CrossRef]
- Kwon, W.; Do, S.; Lee, J.; Hwang, S.; Kim, J.K.; Rhee, S.-W. Freestanding Luminescent Films of Nitrogen-Rich Carbon Nanodots toward Large-Scale Phosphor-Based White-Light-Emitting Devices. Chem. Mater. 2013, 25, 1893–1899. [Google Scholar] [CrossRef]
- Carra, C.; Medvids, A.; Litvinas, D.; Ščajev, P.; Malinauskas, T.; Selskis, A. Hierarchical Carbon Nano-Silica Metamaterials: Implications for White Light Photoluminescence. ACS Appl. Nano Mater. 2022, 5, 4787–4800. [Google Scholar] [CrossRef]
- Levchenko, I.; Baranov, O.; Riccardi, C.; Roman, H.E.; Cvelbar, U.; Ivanova, E.P. Nanoengineered Carbon-Based Interfaces for Advanced Energy and Photonics Applications: A Recent Progress and Innovations. Adv. Mater. Interfaces 2023, 10, 2201739. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, S.; Huang, G.; Xi, L.; Qin, G.; Zhu, M. Fabrication and applications of the optical diamond-like carbon films: A review. J. Mater. Sci. 2022, 57, 3971–3992. [Google Scholar] [CrossRef]
- Sharifahmadian, O.; Pakseresht, A.; Kirubaharan, K.; Mosas, A.; Galusek, D. Doping effects on the tribological performance of diamond-like carbon coatings: A review. J. Mater. Res. Tech. 2023, 27, 7748–7765. [Google Scholar] [CrossRef]
- Ohtake, N.; Hiratsuka, M.; Kanda, K.; Akasaka, H.; Tsujioka, M.; Hirakuri, K.; Hirata, A.; Ohana, T.; Inaba, H.; Kano, M.; et al. Properties and Classification of Diamond-Like Carbon Films. Materials 2021, 14, 315. [Google Scholar] [CrossRef]
- Hoque, M.J.; Li, L.; Ma, J.; Cha, H.; Sett, S.; Yan, X.; Rabbi, K.F.; Ho, J.Y.; Khodakarami, S.; Suwala, J.; et al. Ultra-resilient multi-layer fluorinated diamond like carbon hydrophobic surfaces. Nat. Commun. 2023, 14, 4902. [Google Scholar] [CrossRef]
- Motz, J.T.; Hunter, M.; Galindo, L.H.; Gardecki, J.A.; Kramer, J.R.; Dasari, R.R.; Feld, M.S. Optical fiber probe for biomedical Raman spectroscopy. Appl. Opt. 2004, 43, 542–554. [Google Scholar] [CrossRef]
- Brus, L.E. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4444. [Google Scholar] [CrossRef]
- Murray, C.B.; Norris, D.J.; Bawendi, M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Amer. Chem. Soc. 1993, 115, 8706–8715. [Google Scholar] [CrossRef]
- Ekimov, A.I.; Hache, F.; Schanne-Klein, M.C.; Ricard, D.; Flytzanis, C.; Kudryavtsev, I.A. Absorption and intensity-dependent photoluminescence measurements on CdSe quantum dots: Assignment of the first electronic transitions. JOSA B 1993, 10, 100–107. [Google Scholar] [CrossRef]
- Al Efors, L.; Efors, A.L. Interband absorption of light in a semiconductor sphere, Phys. Techn. Semicond. 1982, 16, 1209–1215. [Google Scholar]
- Medvid’, A.; Fukuda, Y.; Michko, A.; Onufrievs, P.; Anma, Y. 2D lattice formation by YAG:Nd laser on the surface of Ge single crystal. Appl. Surf. Sci. 2005, 244, 120–123. [Google Scholar] [CrossRef]
- Medvid’, A.; Dmytruk, I.; Onufrijevs, P.; Pundyk, I. Quantum confinement effect in nanohills formed on a surface of Ge by laser radiation. Phys. Status Solidi c 2007, 4, 3066–3069. [Google Scholar] [CrossRef]
- Medvid’, A.; Dmitruk, I.; Onufrijevs, P.; Pundyk, I. Properties of Nanostructure Formed on SiO2/Si Interface by Laser Radiation. Solid State Phenom. 2008, 131, 559–562. [Google Scholar] [CrossRef]
- Medvid’, A.; Onufrijevs, P. Properties of nanocones formed on a surface of semiconductors by laser radiation: QC effect of electrons, phonons, and excitons. Nanoscale Res. Lett. 2011, 6, 582. [Google Scholar] [CrossRef]
- Medvid’, A.; Mychko, A.; Gnatyuk, V.; Levytskyi, S.; Naseka, Y. Mechanism of nano-cone formation on Cd0.9Zn0.1Te crystal by laser radiation. Opt. Mater. 2010, 32, 836–839. [Google Scholar] [CrossRef]
- Medvids, A.; Mychko, A.; Onufrijevs, P.; Dauksta, E. Application of Nd:YAG laser in semiconductors nanotechnology. In Nd YAG Laser; Dumitras, D.C., Ed.; IntechOpen: London, UK, 2012; ISBN 978-953-51-0105-5. [Google Scholar] [CrossRef]
- Safari, R.; Sohbatzadeh, F.; Mohsenpour, T. Optical and electrical properties of N-DLC films deposited by atmospheric pressure DBD plasma: Effect of deposition time. Surf. Interf. 2020, 21, 100795. [Google Scholar] [CrossRef]
- LiBassi, A.; Ferrari, A.C.; Stolojan, V.; Tanner, B.K.; Robertson, J.; Brown, L.M. Density, sp3 content and internal layering of DLC films by X-ray reflectivity and electron energy loss spectroscopy. Diam. Relat. Mater. 2000, 9, 771–776. [Google Scholar] [CrossRef]
- Ichii, T.; Hazama, Y.; Naka, N.; Tanaka, K. Study of detailed balance between excitons and free carriers in diamond using broadband terahertz time-domain spectroscopy. Appl. Phys. Lett. 2020, 116, 231102. [Google Scholar] [CrossRef]
- Deng, W.; Zou, J.; Peng, X.; Zhang, J.; Wang, W.; Zhang, Y. Dynamics of graded-composition and graded-doping semiconductor nanowires under local carrier modulation. Opt. Express 2016, 24, 24347–24360. [Google Scholar] [CrossRef]
- Zatryb, G.; Podhorodecki, A.; Misiewicz, J.; Cardin, J.; Gourbilleau, F. On the nature of the stretched exponential photoluminescence decay for silicon nanocrystals. Nanoscale Res. Lett. 2011, 6, 106. [Google Scholar] [CrossRef] [PubMed]
- Ščajev, P.; Gudelis, V.; Jarašiūnas, K.; Kisialiou, I.; Ivakin, E.; Nesládek, M.; Haenen, K. Carrier recombination and diffusivity in microcrystalline CVD-grown and single-crystalline HPHT diamonds. Phys. Status Solidi A 2012, 209, 1744–1749. [Google Scholar] [CrossRef]
- Takagahara, T.; Takeda, K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 1992, 46, 15578–15581. [Google Scholar] [CrossRef] [PubMed]
- Medvids, A.; Ščajev, P.; Miasojedovas, S.; Hara, K. Quantum prism—Nano source of light with dispersive spectrum and optical upconversion. Nanomaterials 2024, 14, 1277. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Saito, Y.; Verma, P. White nanolight source for optical nanoimaging. Sci. Adv. 2020, 6, 23–26. [Google Scholar] [CrossRef]
- No, Y.-S. Electrically Driven Micro- and Nano-Scale Semiconductor Light Source. Appl. Sci. 2019, 9, 802. [Google Scholar] [CrossRef]
Cone Density | Red Edge | Blue Edge | |||
---|---|---|---|---|---|
Sample | μm−2 | τ0, ns | β | τ0, ns | β |
3A | 11 | 0.52 | 0.55 | 0.35 | 0.55 |
2A | 3.1 | 1.12 | 0.56 | 0.59 | 0.56 |
1A | 0.2 | 1.35 | 0.72 | 1.25 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medvids, A.; Ščajev, P.; Hara, K. Quantum Cone—A Nano-Source of Light with Dispersive Spectrum Distributed along Height and in Time. Nanomaterials 2024, 14, 1580. https://doi.org/10.3390/nano14191580
Medvids A, Ščajev P, Hara K. Quantum Cone—A Nano-Source of Light with Dispersive Spectrum Distributed along Height and in Time. Nanomaterials. 2024; 14(19):1580. https://doi.org/10.3390/nano14191580
Chicago/Turabian StyleMedvids, Arturs, Patrik Ščajev, and Kazuhiko Hara. 2024. "Quantum Cone—A Nano-Source of Light with Dispersive Spectrum Distributed along Height and in Time" Nanomaterials 14, no. 19: 1580. https://doi.org/10.3390/nano14191580
APA StyleMedvids, A., Ščajev, P., & Hara, K. (2024). Quantum Cone—A Nano-Source of Light with Dispersive Spectrum Distributed along Height and in Time. Nanomaterials, 14(19), 1580. https://doi.org/10.3390/nano14191580