Editorial of the Special Issue ‘Nano-Optics and Nano-Optoelectronics: Challenges and Future Trends’
Conflicts of Interest
References
- Kanyang, R.; Fang, C.; Yang, Q.; Shao, Y.; Han, G.; Liu, Y.; Hao, Y. Electro-Optical Modulation in High Q Metasurface Enhanced with Liquid Crystal Integration. Nanomaterials 2022, 12, 3179. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.J.; Rahman, M.H.; Faruque, M.R.I. An Innovative Polarisation-Insensitive Perfect Metamaterial Absorber with an Octagonal-Shaped Resonator for Energy Harvesting at Visible Spectra. Nanomaterials 2023, 13, 1882. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Linghu, J.; Wang, X.; Zhao, Q.; Shen, H. Angular-Dependent THz Modulator with Hybrid Metal-Graphene Metastructures. Nanomaterials 2023, 13, 1914. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Huang, S. Generation of Subdiffraction Optical Needles by Simultaneously Generating and Focusing Azimuthally Polarized Vortex Beams through Pancharatnam–Berry Metalenses. Nanomaterials 2022, 12, 4074. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Jiang, X.; Wang, Z.; Chen, Y.; Chen, L.; Gao, B.; Yu, W. Broadband Achromatic Metalens for Tunable Focused Vortex Beam Generation in the Near-Infrared Range. Nanomaterials 2023, 13, 2765. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, J.; Carretero-Palacios, S.; Molina, P.; Bravo-Abad, J.; Ramírez, M.O.; Bausá, L.E. Silver Nanoparticle Chains for Ultra-Long-Range Plasmonic Waveguides for Nd3+ Fluorescence. Nanomaterials 2022, 12, 4296. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, M.-y.; Liu, S.; Ma, Y.; Sun, B.; Wang, L.; Lu, H.; Wen, X.; Liu, S.; Ding, X. A Novel Strategy for the Synthesis of High Stability of Luminescent Zero Dimensional–Two Dimensional CsPbBr3 Quantum Dot/1,4-bis(4-methylstyryl)benzene Nanoplate Heterostructures at an Atmospheric Condition. Nanomaterials 2023, 13, 2723. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Zheng, Z.; Yu, Z.; Feng, S.; Lan, H.; Wang, S.; Zhang, M.; Li, L.; Liang, H. Optically Controlling Broadband Terahertz Modulator Based on Layer-Dependent PtSe2 Nanofilms. Nanomaterials 2023, 13, 795. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cheng, B.; Huang, S.; Huang, X.; Jiang, R.; Wang, X.; Zhang, W.; Jia, B.; Lu, P.; Song, H.-Z. The Tunable Electronic and Optical Properties of Two-Dimensional Bismuth Oxyhalides. Nanomaterials 2023, 13, 2798. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, G.; Dong, C.; Guan, X.; Gao, S.; Hao, J.; Chen, C.; Lu, P. Investigation of Vacancy-Ordered Double Perovskite Halides A2Sn1−xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I): Promising Materials for Photovoltaic Applications. Nanomaterials 2023, 13, 2744. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, J.; Guo, D.; Shen, K.; Chen, B.; Wu, J. Design and Fabrication of High Performance InGaAs near Infrared Photodetector. Nanomaterials 2023, 13, 2895. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shang, H.; Zheng, X.; Chu, T. Post-Processing Trimming of Silicon Photonic Devices Using Femtosecond Laser. Nanomaterials 2023, 13, 1031. [Google Scholar] [CrossRef] [PubMed]
- Astrauskytė, D.; Galvanauskas, K.; Gailevičius, D.; Drazdys, M.; Malinauskas, M.; Grineviciute, L. Anti-Reflective Coatings Produced via Atomic Layer Deposition for Hybrid Polymer 3D Micro-Optics. Nanomaterials 2023, 13, 2281. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zhang, N.; Zhang, H.; Lu, C. A Multi-Channel Frequency Router Based on an Optimization Algorithm and Dispersion Engineering. Nanomaterials 2023, 13, 2133. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xu, C.; Xie, J.; Lee, C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. Nanomaterials 2023, 13, 2377. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, Y.; Wang, Y.; Liu, Y.; Liu, Y.; Wang, Z.; Miao, R.; Han, D.; Hui, Z.; Li, W. Neuromorphic Photonics Based on Phase Change Materials. Nanomaterials 2023, 13, 1756. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.-Z. Editorial of the Special Issue ‘Nano-Optics and Nano-Optoelectronics: Challenges and Future Trends’. Nanomaterials 2024, 14, 169. https://doi.org/10.3390/nano14020169
Song H-Z. Editorial of the Special Issue ‘Nano-Optics and Nano-Optoelectronics: Challenges and Future Trends’. Nanomaterials. 2024; 14(2):169. https://doi.org/10.3390/nano14020169
Chicago/Turabian StyleSong, Hai-Zhi. 2024. "Editorial of the Special Issue ‘Nano-Optics and Nano-Optoelectronics: Challenges and Future Trends’" Nanomaterials 14, no. 2: 169. https://doi.org/10.3390/nano14020169
APA StyleSong, H. -Z. (2024). Editorial of the Special Issue ‘Nano-Optics and Nano-Optoelectronics: Challenges and Future Trends’. Nanomaterials, 14(2), 169. https://doi.org/10.3390/nano14020169