Unified Interpretations of Two Kinds of Needle-Shaped Precipitates Using Transmission Electron Microscopy and Small-Angle Neutron Scattering in Aged Al–Mg2Si(-Cu) Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Age-Hardening Curves
3.2. TEM Observations
3.3. SANS Analyses
3.4. Unified Interpretations of Random-Type Precipitate and Needle-Shaped R Phase
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buchanan, K.; Colas, K.; Ribis, J.; Lopez, A.; Garnier, J. Analysis of the metastable precipitates in peak-hardness aged Al-Mg-Si(-Cu) alloys with differing Si contents. Acta Mater. 2017, 132, 209–221. [Google Scholar] [CrossRef]
- Murayama, M.; Hono, K. Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys. Acta Mater. 1999, 47, 1537–1548. [Google Scholar] [CrossRef]
- Matsuda, K.; Gamada, H.; Fujii, K.; Uetani, Y.; Sato, T.; Kamio, A.; Ikeno, S. High-resolution electron microscopy on the structure of Guinier-Preston zones in an Al-1.6 mass pct Mg2Si alloy. Metall. Mater. Trans. A 1998, 29A, 1161–1167. [Google Scholar] [CrossRef]
- Hasting, H.S.; Froseth, A.G.; Andersen, S.J.; Vissers, R.; Walmsley, J.C.; Marioara, C.D.; Danoix, F.; Lefebvre, W.; Holmestad, R. Composition of β″ precipitates in Al–Mg–Si alloys by atom probe tomography and first principles calculations. J. Appl. Phys. 2009, 106, 12357–12361. [Google Scholar] [CrossRef]
- Pashley, D.W.; Rhodes, J.W.; Sendorek, A. Delayed ageing in aluminium-magnesium silicon alloys: Effect on structure and mechanical properties. J. Inst. Met. 1966, 94, 41–49. [Google Scholar]
- Pashley, D.W.; Jacobs, M.H.; Viez, J.T. The basic process affecting two-step aging in an Al-Mg-Si alloy. Philos. Mag. 1967, 15, 51–76. [Google Scholar] [CrossRef]
- Edwards, G.A.; Stiller, K.; Dunlop, G.L.; Couper, M.J. The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 1998, 46, 3893–3904. [Google Scholar] [CrossRef]
- Yamada, K.; Sato, T.; Kamio, A. Cluster formation and two-step aging behaviors of Al-Mg-Si alloys. J. JILM 2001, 51, 215–221. [Google Scholar] [CrossRef]
- Huppert, G.; Hornbogen, E. The effect of Mg-additions on precipitation behaviour of Al-Si alloys. In Proceedings of the 4th International Conference on Aluminum Alloys, Atlanta, GA, USA, 11–16 September 1994; pp. 628–635. Available online: http://www.icaa-conference.net/ICAA4/Volume%201/628.pdf (accessed on 5 October 2023).
- Chen, J.H.; Costan, E.; van Huis, M.A.; Xu, Q.; Zandbergen, H.W. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 2006, 312, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Marioara, C.D.; Andersen, S.J.; Jansen, J.; Zandbergen, H.W. Atomic model for GP-zones in a 6082 Al–Mg–Si system. Acta Mater. 2001, 49, 321–328. [Google Scholar] [CrossRef]
- van Huis, M.A.; Chen, J.H.; Sluiter, M.H.F.; Zandbergen, H.W. Phase stability and structural features of matrix-embedded hardening precipitates in Al-Mg-Si alloys in the early stages of evolution. Acta Mater. 2007, 55, 2183–2199. [Google Scholar] [CrossRef]
- Marioara, C.D.; Andersen, S.J.; Zandbergen, H.W.; Holmestad, R. The influence of alloy composition on precipitates of the Al-Mg-Si system. Metall. Mater. Trans. A 2005, 36, 691–702. [Google Scholar] [CrossRef]
- Hornbogen, E.; Mukhopadhyay, A.K.; Starke, E.A., Jr. Nucleation of the diamond phase in aluminium-solid solutions. J. Mater. Sci. 1993, 28, 3670–3674. [Google Scholar] [CrossRef]
- Dong, L.; Chu, S.; Hu, B.; Zeng, X.; Chen, B. Atomic-scale investigation into precipitated phase thickening in Al-Si-Mg-Cu alloy. J. Alloys Compd. 2018, 766, 973–978. [Google Scholar] [CrossRef]
- Cayron, C.; Buffat, P.A. Transmission electron microscopy study of the β′ phase (Al-Mg-Si alloys) and QC phase (Al-Cu-Mg-Si alloys): Ordering mechanism and crystallographic structure. Acta Mater. 2000, 48, 2639–2653. [Google Scholar] [CrossRef]
- Chakrabarti, D.J.; Laughlin, D.E. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions. Prog. Mater. Sci. 2004, 49, 389–410. [Google Scholar] [CrossRef]
- Torsaeter, M.; Lefebvre, W.; Marioara, C.D.; Andersen, S.J.; Walmsley, J.C.; Holmestad, R. Study of intergrown L and Q′ precipitates in Al–Mg–Si–Cu alloys. Scr. Mater. 2011, 64, 817–820. [Google Scholar] [CrossRef]
- Matsuda, K.; Taniguchi, S.; Kido, K.; Uetani, Y.; Ikeno, S. Effects of Cu and transition metals on the precipitation behaviors of metastable phases at 523 K in Al-Mg-Si alloys. Mater. Trans. 2002, 43, 2789–2795. [Google Scholar] [CrossRef]
- Marioara, C.D.; Andersen, S.J.; Stene, T.N.; Hasting, H.; Walmsley, J.; Van Helvoort, A.T.J.; Holmestad, R. The effect of Cu on precipitation in Al-Mg-Si alloys. Philos. Mag. 2007, 87, 3385–3413. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Q.; Feng, L.; Hui, L.; Jing, C. Influence of Cu content on ageing behavior of Al-Si-Mg-Cu cast alloys. Mater. Des. 2007, 28, 1001–1005. [Google Scholar] [CrossRef]
- Miao, W.F.; Laughlin, D.E. Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022. Metall. Mater. Trans. A 2000, 31, 361–371. [Google Scholar] [CrossRef]
- Saito, T.; Marioara, C.D.; Andersen, S.J.; Lefebvre, W.; Holmestad, R. Aberration-corrected HAADF-STEM investigations of precipitate structures in Al–Mg–Si alloys with low Cu additions. Philos. Mag. Ser. 2014, 94, 520–531. [Google Scholar] [CrossRef]
- Sagalowicz, L.; Hug, G.; Bechet, D.; Sainfort, P.; Lapasset, G. A Study of The Structural Precipitation in the Al-Mg-Si-Cu System. In Proceedings of the 4th International Conference on Aluminum Alloys, Atlanta, GA, USA, 11–16 September 1994; pp. 636–643. Available online: http://www.icaa-conference.net/ICAA4/Volume%201/636.pdf (accessed on 30 December 2023).
- Matsuda, K.; Kawai, A.; Watanabe, K.; Lee, S.; Marioara, C.D.; Wenner, S.; Nishimura, K.; Matsuzaki, T.; Nunomura, N.; Sato, T.; et al. Extra electron diffraction spots caused by fine precipitates formed at the early stage of aging in Al-Mg-X (X = Si, Ge, Zn)-Cu alloys. Mater. Trans. 2017, 58, 167–175. [Google Scholar] [CrossRef]
- Ohnuma, M.; Suzuki, J. Study on microstructures of advanced metallic materials by small-angle X-ray and neutron scattering. Bunseki Kagaku 2006, 55, 381–390. [Google Scholar] [CrossRef]
- Donnadieu, P.; Carsughi, F.; Redjaimia, A.; Diot, C.; Lapasset, G. Nanoscale hardening precipitiation in AlMgSi alloys: A transmission electron microscopy and small-angle neutron scattering study. J. Appl. Cryst. 1998, 31, 212–222. [Google Scholar] [CrossRef]
- Schiffmann, R.; Haug, J.; Banhart, J. Evolution of Precipitates during Age-hardening of AW 6016 Alloy. In Proceedings of the 9th International Conference on Aluminum Alloys, Brisbane, Australia, 2–5 August 2004; pp. 604–608. Available online: http://www.icaa-conference.net/ICAA9/data/papers/GP%2081.pdf (accessed on 13 November 2023).
- Albertini, G.; Caglioti, G.; Fiori, F.; Pastorelli, R. SANS investigation of precipitation in heat-treated AA6082 alloy. Phys. B Condens. Matter. 2000, 276–278, 921–922. [Google Scholar] [CrossRef]
- Chang, C.S.T.; Geuser, F.D.; Banhart, J. In situ characterization of β″ precipitation in an Al-Mg-Si alloy by anisotropic small-angle neutron scattering on a single crystal. J. Appl. Cryst. 2015, 48, 455–463. [Google Scholar] [CrossRef]
- Takata, S.; Suzuki, J.; Shinohara, T.; Oku, T.; Tominaga, T.; Ohishi, K.; Iwase, H.; Nakatani, T.; Inamura, Y.; Ito, T.; et al. The Design and q Resolution of the Small and Wide Angle Neutron Scattering Instrument (TAIKAN) in J-PARC. JPS Conf. Proc. 2015, 8, 036020. [Google Scholar] [CrossRef]
- Yajima, E. Precipitation Hardening. Denki-Seiko 1966, 37, 65–72. [Google Scholar] [CrossRef]
- Saito, T.; Muraishi, S.; Marioara, C.D.; Andersen, S.J.; Røyset, J.; Holmestad, R. The Effects of Low Cu Additions and Predeformation on the Precipitation in a 6060 Al-Mg-Si Alloy. Metall. Mater. Trans. A 2013, 44, 4124–4135. [Google Scholar] [CrossRef]
- Livak, R.J. The effects of copper and chromium on the aging response of dilute AI-Mg-Si alloys. Metall. Trans. A 1982, 13A, 1318–1321. [Google Scholar] [CrossRef]
- Yang, W.; Wang, M.; Zhang, R.; Zhanga, Q.; Shenga, X. The diffraction patterns from β″ precipitates in 12 orientations in Al-Mg-Si alloy. Script. Mater. 2010, 62, 705–708. [Google Scholar] [CrossRef]
- Moons, T.; Ratchev, P.; De Smet, P.; Verlinden, B.; Van Houtte, P. A comparative study of two Al-Mg-Si alloys for automotive applications. Sci. Mater. 1996, 35, 939–945. [Google Scholar] [CrossRef]
- Matsumoto, K.; Komatsu, S.; Ikeda, M.; Verlinden, B.; Ratchev, P. Quantification of Volume Fraction of Precipitates in an Aged Al-1.0mass%Mg2Si Alloy. Mater. Trans. 2000, 41, 1275–1281. [Google Scholar] [CrossRef]
- Tanaka, T.; Toji, Y.; Kozikowski, P.; Ohnuma, M.; Nagano, M. SAXS and TEM quantitative analysis of plate-like precipitates in Ti-added low-carbon steel. ISIJ Int. 2020, 60, 2246–2254. [Google Scholar] [CrossRef]
- Pedersen, J.S. Analysis of small-angle scattering data from colloids and polymer solutions: Modeling and least-squares fitting. Adv. Colloid Interface Sci. 1997, 70, 171–210. [Google Scholar] [CrossRef]
- Kleiven, D.; Akola, J. Precipitate formation in aluminium alloys: Multi-scale modelling approach. Acta Mater. 2020, 195, 123–131. [Google Scholar] [CrossRef]
Alloys | Mg | Si | Cu | Al | |
---|---|---|---|---|---|
mass% | Cu-free | 0.63 | 0.37 | 0 | bal. |
Cu-containing | 0.63 | 0.37 | 0.50 | bal. | |
mol% | Cu-free | 0.70 | 0.36 | 0 | bal. |
Cu-containing | 0.70 | 0.36 | 0.21 | bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaharudin, A.A.; Ohnuma, M.; Lee, S.; Tsuchiya, T.; Asada, Y.; Ikeda, K.-i.; Ohishi, K.; Suzuki, J.-i.; Matsuda, K.; Homma, T. Unified Interpretations of Two Kinds of Needle-Shaped Precipitates Using Transmission Electron Microscopy and Small-Angle Neutron Scattering in Aged Al–Mg2Si(-Cu) Alloys. Nanomaterials 2024, 14, 176. https://doi.org/10.3390/nano14020176
Kaharudin AA, Ohnuma M, Lee S, Tsuchiya T, Asada Y, Ikeda K-i, Ohishi K, Suzuki J-i, Matsuda K, Homma T. Unified Interpretations of Two Kinds of Needle-Shaped Precipitates Using Transmission Electron Microscopy and Small-Angle Neutron Scattering in Aged Al–Mg2Si(-Cu) Alloys. Nanomaterials. 2024; 14(2):176. https://doi.org/10.3390/nano14020176
Chicago/Turabian StyleKaharudin, Amalina Aina, Masato Ohnuma, Seungwon Lee, Taiki Tsuchiya, Yuuki Asada, Ken-ichi Ikeda, Kazuki Ohishi, Jun-ichi Suzuki, Kenji Matsuda, and Tomoyuki Homma. 2024. "Unified Interpretations of Two Kinds of Needle-Shaped Precipitates Using Transmission Electron Microscopy and Small-Angle Neutron Scattering in Aged Al–Mg2Si(-Cu) Alloys" Nanomaterials 14, no. 2: 176. https://doi.org/10.3390/nano14020176
APA StyleKaharudin, A. A., Ohnuma, M., Lee, S., Tsuchiya, T., Asada, Y., Ikeda, K. -i., Ohishi, K., Suzuki, J. -i., Matsuda, K., & Homma, T. (2024). Unified Interpretations of Two Kinds of Needle-Shaped Precipitates Using Transmission Electron Microscopy and Small-Angle Neutron Scattering in Aged Al–Mg2Si(-Cu) Alloys. Nanomaterials, 14(2), 176. https://doi.org/10.3390/nano14020176