Properties Optimization of Polypropylene/Montmorillonite Nanocomposite Drawn Fibers
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fiber Production and Drawing
2.3. Characterization
3. Design of Experiments
4. Results and Discussion
4.1. DoE with Cloisite® 10A as a Filler
4.1.1. Main Effects of the Factors
4.1.2. Combined Effect of the Factors
4.1.3. Optimization
4.1.4. Model Evaluation
4.1.5. Fiber Structure
4.2. DoE with Cloisite® 15A as a Filler
4.2.1. Main Effects of the Factors
4.2.2. Combined Effect of the Factors
4.2.3. Optimization
4.2.4. Model Evaluation
4.2.5. Fiber Structure
4.3. Further Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsioptsias, C.; Leontiadis, K.; Tzimpilis, E.; Tsivintzelis, I. Polypropylene nanocomposite fibers: A review of current trends and new developments. J. Plast. Film Sheeting 2021, 37, 283–311. [Google Scholar] [CrossRef]
- Joshi, M.; Viswanathan, V. High-Performance Filaments from Compatibilized Polypropylene/Clay Nanocomposites. J. Appl. Polym. Sci. 2006, 102, 2164–2174. [Google Scholar] [CrossRef]
- Leontiadis, K.; Tsioptsias, C.; Messaritakis, S.; Terzaki, A.; Xidas, P.; Mystikos, K.; Tzimpilis, E.; Tsivintzelis, I. Optimization of Thermal and Mechanical Properties of Polypropylene-Wollastonite Composite Drawn Fibers Based on Surface Response Analysis. Polymers 2022, 14, 924. [Google Scholar] [CrossRef] [PubMed]
- Leontiadis, K.; Tsioptsias, C.; Messaritakis, S.; Terzaki, A.; Xidas, P.; Mystikos, K.; Tzimpilis, E.; Tsivintzelis, I. Surface Response Analysis for the Optimization of Mechanical and Thermal Properties of Polypropylene Composite Drawn Fibers with Talc and Carbon Nanotubes. Polymers 2022, 14, 1329. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, D.; Sartori, G.; Ferrara, G.; Fambri, L. Spinnability of Nanofilled Polypropylene. Macromol. Symp. 2011, 301, 73–81. [Google Scholar] [CrossRef]
- Joshi, M.; Shaw, M.; Butola, B.S. Studies on Composite Filaments from Nanoclay Reinforced Polypropylene. Fibers Polym. 2004, 5, 59–67. [Google Scholar] [CrossRef]
- Van Erp, T.B.; Reynolds, C.T.; Bilotti, E.; Peijs, T. Nanoclay assisted ultra-drawing of polypropylene tapes. Nanocomposites 2019, 5, 114–123. [Google Scholar] [CrossRef]
- Mohan, T.P.; Kanny, K. Preparation and characteristics of polypropylene-clay nanocomposite fibers. J. Polym. Eng. 2015, 35, 773–784. [Google Scholar] [CrossRef]
- Cimmino, S.; Duraccio, D.; Silvestre, C.; Pezzuto, M. Isotactic polypropylene modified with clay and hydrocarbon resin: Compatibility, structure and morphology in dependence on crystallization conditions. Appl. Surf. Sci. 2009, 256, S40–S45. [Google Scholar] [CrossRef]
- Manias, E.; Touny, A.; Wu, L.; Strawhecker, K.; Lu, B.; Chung, T.C. Polypropylene/Montmorillonite Nanocomposites. Review of the Synthetic Routes and Materials Properties. Chem. Mater. 2001, 13, 3516–3523. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Faruk, O.; Matuana, L.M. Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Compos. Sci. Technol. 2008, 68, 2073–2077. [Google Scholar] [CrossRef]
- Ko, C.H.; Fan, C.; Chiang, P.N.; Wang, M.K.; Lin, K.C. p-Nitrophenol, phenol and aniline sorption by organo-clays. J. Hazard. Mater. 2007, 149, 275–282. [Google Scholar] [CrossRef]
- Li, X.; Kang, T.; Cho, W.-J.; Lee, J.-K.; Ha, C.-S. Preparation and Characterization of Poly(butyleneterephthalate)/Organoclay Nanocomposites. Macromol. Rapid Commun. 2001, 22, 1306–1312. [Google Scholar] [CrossRef]
- Snigdha, S.; Nandakumar, K.; Sabu, T.; Radhakrishnan, E.K. Cloisite 10A as an Effective Antibacterial Agent in Polymer Matrices: Role of Nanoscale Roughness and Interfacial Interactions. Clays Clay Miner. 2021, 69, 289–298. [Google Scholar] [CrossRef]
- Rangari, V.K.; Hassan, T.A.; Zhou, Y.; Mahfuz, H.; Jeelani, S.; Prorok, B.C. Cloisite clay-infused phenolic foam nanocomposites. J. Appl. Polym. Sci. 2007, 103, 308–314. [Google Scholar] [CrossRef]
- Cengiz, F. Preparation and Characterization of Recycled Polypropylene Based Nanocomposites. Master Thesis, Middle East Technical University, Ankara, Turkey, 2008. [Google Scholar]
- Raka, L.; Bogoeva-Gaceva, G.; Loos, J. Characterization of polypropylene/layered silicate nanocomposites prepared by single-step method. J. Therm. Anal. Calorim. 2010, 100, 629–639. [Google Scholar] [CrossRef]
- Okamoto, M.; Morita, S.; Taguchi, H.; Kim, Y.H.; Kotaka, T.; Tateyama, H. Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization. Polymer 2000, 41, 3887–3890. [Google Scholar] [CrossRef]
- Zeng, Q.H.; Wang, D.Z.; Yu, A.B.; Lu, C.Q. Synthesis of polymer–montmorillonite nanocomposites by in situ intercalative polymerization. Nanotechnology 2002, 13, 549. [Google Scholar] [CrossRef]
- Machado, G.; Denardin, E.L.G.; Kinast, E.J.; Gonçalves, M.C.; de Luca, M.A.; Teixeira, S.R.; Samios, D. Crystalline properties and morphological changes in plastically deformed isotatic polypropylene evaluated by X-ray diffraction and transmission electron microscopy. Eur. Polym. J. 2005, 41, 129–138. [Google Scholar] [CrossRef]
- Karacan, I.; Benli, H. The influence of annealing treatment on the molecular structure and the mechanical properties of isotactic polypropylene fibers. J. Appl. Polym. Sci. 2011, 122, 3322–3338. [Google Scholar] [CrossRef]
- Karacan, I.; Benli, H. An X-ray Diffraction study for isotactic polypropylene fibers produced with take-up speeds of 2500–4250 m/min. Text Apparel 2011, 21, 201–209. [Google Scholar]
- Poddubny, V.I.; Lavrentyev, V.K.; Sidorovich, A.V.; Baranov, V.G. X-ray studies of smectic-crystal and crystal-smectic transition in oriented polypropylene. Acta Polym. 1982, 33, 483–485. [Google Scholar] [CrossRef]
Material | Trade Name | Characteristics 1,2,3 | Supplier |
---|---|---|---|
Isotactic PP | Ecolen HZ42Q | MFI = 18 g/10 min, TS = 33 MPa, Tm = 168–171 °C | Hellenic Petroleum S.A., Thessaloniki, Greece |
Masterbatch with compatibilizer | Bondyram® 1001 | PP grafted with maleic anhydride (PP-g-MA). MA content 1%, MFI = 100 g/10 min, Tm = 160 °C | Polyram Plastic Industries Ltd., Gilboa, Israel |
Masterbatch with antioxidant | KRITILEN® AO PP9216 | PP with 20.5 wt.% antioxidant (combination of phosphite and phenolic types) | Plastika Kritis S.A., Heraklion, Greece |
Organically modified montmorillonite | Cloisite® 10A | Montmorillonite treated with quaternary ammonium salts (2Μ2HΤ), CEC = 125 meq/100 g | Southern Clay Products Inc. (Austin, TX, USA) |
Organically modified montmorillonite | Cloisite® 15A | Montmorillonite treated with quaternary ammonium salts (2ΜBHΤ), CEC = 125 meq/100 g | Southern Clay Products Inc. (Austin, TX, USA) |
Sample Name | Cloisite® (wt%) | Compatibilizer Masterbatch (wt%) | Drawing Temperature (°C) |
---|---|---|---|
Cl1 | 0 | 0 | 120 |
Cl2 | 2 | 0 | 120 |
Cl3 | 0 | 4 | 120 |
Cl4 | 2 | 4 | 120 |
Cl5 | 0 | 2 | 100 |
Cl6 | 2 | 2 | 100 |
Cl7 | 0 | 2 | 140 |
Cl8 | 2 | 2 | 140 |
Cl9 | 1 | 0 | 100 |
Cl10 | 1 | 4 | 100 |
Cl11 | 1 | 0 | 140 |
Cl12 | 1 | 4 | 140 |
Cl13 | 1 | 2 | 120 |
Cl14 | 1 | 2 | 120 |
Cl15 | 1 | 2 | 120 |
Sample | Cloisite® (wt%) | Compatibilizer Masterbatch (wt%) | Drawing Temperature (°C) | Tensile Strength (MPa) | Tdec (°C) |
---|---|---|---|---|---|
Cl10A1 | 0 | 0 | 120 | 506 ± 34 | 294 |
Cl10A2 | 2 | 0 | 120 | 472 ± 39 | 296 |
Cl10A3 | 0 | 4 | 120 | 515 ± 22 | 290 |
Cl10A4 | 2 | 4 | 120 | 468 ± 40 | 296 |
Cl10A5 | 0 | 2 | 100 | 536 ± 34 | 302 |
Cl10A6 | 2 | 2 | 100 | 496 ± 37 | 296 |
Cl10A7 | 0 | 2 | 140 | 384 ± 29 | 281 |
Cl10A8 | 2 | 2 | 140 | 387 ± 25 | 285 |
Cl10A9 | 1 | 0 | 100 | 490 ± 29 | 293 |
Cl10A10 | 1 | 4 | 100 | 468 ± 33 | 298 |
Cl10A11 | 1 | 0 | 140 | 449 ± 24 | 298 |
Cl10A12 | 1 | 4 | 140 | 365 ± 23 | 301 |
Cl10A13 | 1 | 2 | 120 | 511 ± 23 | 301 |
Cl10A14 | 1 | 2 | 120 | 500 ± 27 | 290 |
Cl10A15 | 1 | 2 | 120 | 510 ± 25 | 297 |
Tensile Strength (MPa) | Decomposition Temperature (°C) | |
---|---|---|
Validation sample | 481 ± 28 | 291 |
Optimization prediction | 519 | 297 |
Absolute relative deviation (%) | 7.4 | 2 |
Tensile Strength Model | Decomposition Temperature Model | |
---|---|---|
R2 (%) | 90.63 | 40.76 |
p-value | 0.039 | 0.900 |
Sample | Cloisite® (wt%) | Compatibilizer Masterbatch (wt%) | Drawing Temperature (°C) | Tensile Strength (MPa) | Tdec (°C) |
---|---|---|---|---|---|
Cl15A1 | 0 | 0 | 120 | 506 ± 34 | 294 |
Cl15A2 | 2 | 0 | 120 | 543 ± 25 | 289 |
Cl15A3 | 0 | 4 | 120 | 515 ± 22 | 290 |
Cl15A4 | 2 | 4 | 120 | 500 ± 31 | 282 |
Cl15A5 | 0 | 2 | 100 | 536 ± 34 | 302 |
Cl15A6 | 2 | 2 | 100 | 505 ± 31 | 293 |
Cl15A7 | 0 | 2 | 140 | 384 ± 29 | 281 |
Cl15A8 | 2 | 2 | 140 | 393 ± 24 | 291 |
Cl15A9 | 1 | 0 | 100 | 546 ± 28 | 294 |
Cl15A10 | 1 | 4 | 100 | 509 ± 21 | 297 |
Cl15A11 | 1 | 0 | 140 | 421 ± 35 | 296 |
Cl15A12 | 1 | 4 | 140 | 365 ± 23 | 300 |
Cl15A13 | 1 | 2 | 120 | 540 ± 23 | 295 |
Cl15A14 | 1 | 2 | 120 | 518 ± 33 | 289 |
Cl15A15 | 1 | 2 | 120 | 539 ± 39 | 300 |
Tensile Strength (MPa) | Decomposition Temperature (°C) | |
---|---|---|
Validation sample | 478 ± 39 | 296 |
Optimization prediction | 545 | 296 |
Relative absolute deviation (%) | 12.4 | 0 |
Tensile Strength (MPa) | Decomposition Temperature (°C) | |
---|---|---|
R2 (%) | 96.19 | 56.97 |
p-value | 0.005 | 0.676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leontiadis, K.; Theodoratou, K.; Tsioptsias, C.; Tsivintzelis, I. Properties Optimization of Polypropylene/Montmorillonite Nanocomposite Drawn Fibers. Nanomaterials 2024, 14, 223. https://doi.org/10.3390/nano14020223
Leontiadis K, Theodoratou K, Tsioptsias C, Tsivintzelis I. Properties Optimization of Polypropylene/Montmorillonite Nanocomposite Drawn Fibers. Nanomaterials. 2024; 14(2):223. https://doi.org/10.3390/nano14020223
Chicago/Turabian StyleLeontiadis, Konstantinos, Katerina Theodoratou, Costas Tsioptsias, and Ioannis Tsivintzelis. 2024. "Properties Optimization of Polypropylene/Montmorillonite Nanocomposite Drawn Fibers" Nanomaterials 14, no. 2: 223. https://doi.org/10.3390/nano14020223
APA StyleLeontiadis, K., Theodoratou, K., Tsioptsias, C., & Tsivintzelis, I. (2024). Properties Optimization of Polypropylene/Montmorillonite Nanocomposite Drawn Fibers. Nanomaterials, 14(2), 223. https://doi.org/10.3390/nano14020223