Using Femtosecond Laser Light to Investigate the Concentration- and Size-Dependent Nonlinear Optical Properties of Laser-Ablated CuO Quantum Dots
Abstract
:1. Introduction
2. Synthesis and Structural Characterization of CuO NPs
2.1. Synthesis of CuO NPs by PLA
2.2. Characterization of CuO NPs
3. Linear and Nonlinear Optical Characteristics of CuO NPs
3.1. Linear Optical Characteristics of CuO NPs
3.2. Nonlinear Optical Characteristics of CuO NPs
3.2.1. Measuring the Nonlinear Absorption (NLA) Coefficient
3.2.2. Measuring the Nonlinear Refractive Index (NLR)
4. Optical Limiter
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications, and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Umar, K.; Ibrahim MN, M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications—A review. Appl. Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold nanoparticles for biology and medicine. In Spherical Nucleic Acids; Taylor & Francis Group: Abingdon, UK, 2020; pp. 55–90. [Google Scholar]
- Rudramurthy, G.R.; Swamy, M.K. Potential applications of engineered nanoparticles in medicine and biology: An update. JBIC J. Biol. Inorg. Chem. 2018, 23, 1185–1204. [Google Scholar] [CrossRef] [PubMed]
- Astruc, D. Introduction: Nanoparticles in catalysis. Chem. Rev. 2020, 120, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Chandrakala, V.; Aruna, V.; Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater. 2022, 5, 1593–1615. [Google Scholar] [CrossRef]
- Hammami, I.; Alabdallah, N.M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ.-Sci. 2021, 33, 101560. [Google Scholar] [CrossRef]
- Dawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S.; Lamichhane, G.; Bhattarai, D.P.; Parajuli, N. Current research on silver nanoparticles: Synthesis, characterization, and applications. J. Nanomater. 2021, 2021, 6687290. [Google Scholar] [CrossRef]
- Chlumsky, O.; Purkrtova, S.; Michova, H.; Sykorova, H.; Slepicka, P.; Fajstavr, D.; Ulbrich, P.; Viktorova, J.; Demnerova, K. Antimicrobial properties of palladium and platinum nanoparticles: A new tool for combating food-borne pathogens. Int. J. Mol. Sci. 2021, 22, 7892. [Google Scholar] [CrossRef]
- Letchumanan, D.; Sok, S.P.; Ibrahim, S.; Nagoor, N.H.; Arshad, N.M. Plant-based biosynthesis of copper/copper oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicity. Biomolecules 2021, 11, 564. [Google Scholar] [CrossRef]
- Wang, L.; Hasanzadeh Kafshgari, M.; Meunier, M. Optical properties and applications of plasmonic-metal nanoparticles. Adv. Funct. Mater. 2020, 30, 2005400. [Google Scholar] [CrossRef]
- Shnoudeh, A.J.; Hamad, I.; Abdo, R.W.; Qadumii, L.; Jaber, A.Y.; Surchi, H.S.; Alkelany, S.Z. Synthesis, characterization, and applications of metal nanoparticles. In Biomaterials and Bionanotechnology; Academic Press: Cambridge, MA, USA, 2019; pp. 527–612. [Google Scholar]
- Zhang, D.; Gokce, B.; Barcikowski, S. Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef] [PubMed]
- Sivayogam, D.; Punithavathy, I.K.; Jayakumar, S.J.; Mahendran, N. Study on structural, electro-optical and optoelectronics properties of CuO nanoparticles synthesis via sol gel method. Mater. Today Proc. 2022, 48, 508–513. [Google Scholar] [CrossRef]
- Naz, S.; Gul, A.; Zia, M.; Javed, R. Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl. Microbiol. Biotechnol. 2023, 107, 1039–1061. [Google Scholar] [CrossRef] [PubMed]
- Rydosz, A. The use of copper oxide thin films in gas-sensing applications. Coatings 2018, 8, 425. [Google Scholar] [CrossRef]
- Dhineshbabu, N.R.; Vettumperumal, R. Linear and nonlinear optical properties of CuO NPs for photonics. J. Electron. Mater. 2021, 50, 3668–3675. [Google Scholar] [CrossRef]
- Sekhon, J.S.; Verma, S.S. Cu, CuO, and Cu2O nanoparticle plasmons for enhanced scattering in solar cells. In Optical Nanostructures and Advanced Materials for Photovoltaics; Optica Publishing Group: Washington, DC, USA, 2011; p. JWE22. [Google Scholar]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Mekuye, B.; Abera, B. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Sel. 2023, 4, 486–501. [Google Scholar] [CrossRef]
- Mokhena, T.C.; John, M.J.; Sibeko, M.A.; Agbakoba, V.C.; Mochane, M.J.; Mtibe, A.; Mokhothu, T.H.; Motsoeneng, T.S.; Phiri, M.M.; Phiri, M.J.; et al. Nanomaterials: Types, Synthesis and Characterization. In Nanomaterials in Biofuels Research. Clean Energy Production Technologies; Srivastava, M., Srivastava, N., Mishra, P., Gupta, V., Eds.; Springer: Singapore, 2020. [Google Scholar]
- Claverie, F. Laser ablation. In Sample Introduction Systems in ICPMS and ICPOES; Elsevier: Amsterdam, The Netherlands, 2020; pp. 469–531. [Google Scholar]
- Russo, R.E. Laser ablation research and development: 60 years strong. Appl. Phys. A 2023, 129, 168. [Google Scholar] [CrossRef]
- Ashour, M.; Abdel-Wahab, M.S.; Shehata, A.; Tawfik, W.Z.; Azooz, M.A.; Elfeky, S.A.; Mohamed, T. Experimental investigation of linear and third-order nonlinear optical properties of pure CuO thin film using femtosecond laser pulses. JOSA B 2022, 39, 508–518. [Google Scholar] [CrossRef]
- Boltaev, G.S.; Ganeev, R.A.; Krishnendu, P.S.; Zhang, K.; Guo, C. Nonlinear optical characterization of copper oxide nanoellipsoids. Sci. Rep. 2019, 9, 11414. [Google Scholar] [CrossRef]
- Shahmiri, M.; Ibrahim, N.A.; Faraji, N.; Yunus WM, M.; Asim, N.; Zainuddin, N. Third-order nonlinear optical properties of chemically synthesized copper oxide nanosheets. Phys. E Low-Dimens. Syst. Nanostruct. 2013, 54, 109–114. [Google Scholar] [CrossRef]
- Kim, M.; Osone, S.; Kim, T.; Higashi, H.; Seto, T. Synthesis of nanoparticles by laser ablation: A review. KONA Powder Part. J. 2017, 34, 80–90. [Google Scholar] [CrossRef]
- Stafe, M.; Marcu, A.; Puscas, N.N. Pulsed Laser Ablation of Solids; Springer: Berlin/Heidelberg, Germany, 2014; Volume 10. [Google Scholar]
- Yogesh, G.K.; Shukla, S.; Sastikumar, D.; Koinkar, P. Progress in pulsed laser ablation in liquid (PLAL) technique for the synthesis of carbon nanomaterials: A review. Appl. Phys. A 2021, 127, 810. [Google Scholar] [CrossRef]
- Nyabadza, A.; Vazquez, M.; Brabazon, D. A review of bimetallic and monometallic nanoparticle synthesis via laser ablation in liquid. Crystals 2023, 13, 253. [Google Scholar] [CrossRef]
- Mazhukin, V.I. Nanosecond laser ablation: Mathematical models, computational algorithms, Modeling. In Laser Ablation-From Fundamentals to Applications; InTech: Rijeka, Croatia, 2017; p. 10. [Google Scholar]
- Autrique, D.; Alexiades, V.; Khanal, H. Hydrodynamic modeling of ns-laser ablation. Electron. J. Differ. Equ. 2013, 20, 1–14. [Google Scholar]
- Gojani, A.B. Laser ablation at the hydrodynamic regime. In EPJ Web of Conferences; EDP Sciences: Les Ulis, France, 2013; Volume 2013, p. 01124. [Google Scholar]
- Aiyyzhy, K.O.; Barmina, E.V.; Voronov, V.V.; Shafeev, G.A.; Novikov, G.G.; Uvarov, O.V. Laser ablation and fragmentation of Boron in liquids. Opt. Laser Technol. 2022, 155, 108393. [Google Scholar] [CrossRef]
- Ashour, M.; G Faris, H.; Ahmed, H.; Mamdouh, S.; Thambiratnam, K.; Mohamed, T. Using femtosecond laser pulses to explore the nonlinear optical properties of Au NP colloids that were synthesized by laser ablation. Nanomaterials 2022, 12, 2980. [Google Scholar] [CrossRef]
- Van Doren, E.A.; De Temmerman, P.J.R.; Francisco, M.A.D.; Mast, J. Determination of the volume-specific surface area by using transmission electron tomography for characterization and definition of nanomaterials. J. Nanobiotechnol. 2011, 9, 17. [Google Scholar] [CrossRef]
- Ealia, S.A.M.; Saravanakumar, M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; Volume 263, p. 032019. [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Liu, X.; Adibi, M.; Shahgholi, M.; Tlili, I.; Sajadi, S.M.; Abdollahi, A.; Li, Z.; Karimipour, A. Phase change process in a porous Carbon-Paraffin matrix with different volume fractions of copper oxide Nanoparticles: A molecular dynamics study. J. Mol. Liq. 2022, 366, 120296. [Google Scholar] [CrossRef]
- Altuwirqi, R.M.; Albakri, A.S.; Al-Jawhari, H.; Ganash, E.A. Green synthesis of copper oxide nanoparticles by pulsed laser ablation in spinach leaves extract. Optik 2020, 219, 165280. [Google Scholar] [CrossRef]
- Ammari, H.; Deng, Y.; Millien, P. Surface plasmon resonance of nanoparticles and applications in imaging. Arch. Ration. Mech. Anal. 2016, 220, 109–153. [Google Scholar] [CrossRef]
- Noguez, C. Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C 2007, 111, 3806–3819. [Google Scholar] [CrossRef]
- Klar, T.; Perner, M.; Grosse, S.; Von Plessen, G.; Spirkl, W.; Feldmann, J. Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 1998, 80, 4249. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Vasil’kov, A.Y.; Dovnar, R.I.; Smotryn, S.M.; Iaskevich, N.N.; Naumkin, A.V. Plasmon resonance of silver nanoparticles as a method of increasing their antibacterial action. Antibiotics 2018, 7, 80. [Google Scholar] [CrossRef]
- Baruah, P.K.; Sharma, A.K.; Khare, A. Effective control of particle size, surface plasmon resonance and stoichiometry of Cu@ CuxO nanoparticles synthesized by laser ablation of Cu in distilled water. Opt. Laser Technol. 2018, 108, 574–582. [Google Scholar] [CrossRef]
- Jhuang, L.S.; Kumar, G.; Chen, F.C. Localized surface plasmon resonance of copper nanoparticles improves the performance of quasitwo-dimensional perovskite light-emitting diodes. Dyes Pigments 2021, 188, 109204. [Google Scholar] [CrossRef]
- Rehman, S.; Mumtaz, A.; Hasanain, S.K. Size effects on the magnetic and optical properties of CuO nanoparticles. J. Nanopart. Res. 2011, 13, 2497–2507. [Google Scholar] [CrossRef]
- Horti, N.C.; Kamatagi, M.D.; Patil, N.R.; Sannaikar, M.S.; Inamdar, S.R. Synthesis and optical properties of copper oxide nanoparticles: Effect of solvents. J. Nanophotonics 2020, 14, 046010. [Google Scholar] [CrossRef]
- Radhakrishnan, A.A.; Beena, B.B. Structural and optical absorption analysis of CuO nanoparticles. Indian J. Adv. Chem. Sci. 2014, 2, 158–161. [Google Scholar]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Chukwuocha, E.O.; Onyeaju, M.C.; Harry, T.S. Theoretical studies on the effect of confinement on quantum dots using the brus equation. World J. Condens. Matter Phys. 2012, 2, 96–100. [Google Scholar] [CrossRef]
- Rodríguez-Mas, F.; Ferrer, J.C.; Alonso, J.L.; Valiente, D.; Fernández de Ávila, S. A comparative study of theoretical methods to estimate semiconductor nanoparticles’ size. Crystals 2020, 10, 226. [Google Scholar] [CrossRef]
- Talluri, B.; Prasad, E.; Thomas, T. Ultrasmall (r < 2 nm), stable (>1 year) copper oxide quantum dots with wide band gap. Superlattices Microstruct. 2018, 113, 600–607. [Google Scholar]
- Zhang, Y.X.; Wang, Y.H. Nonlinear optical properties of metal nanoparticles: A review. RSC Adv. 2017, 7, 45129–45144. [Google Scholar] [CrossRef]
- Gloag, L.; Mehdipour, M.; Chen, D.; Tilley, R.D.; Gooding, J.J. Advances in the application of magnetic nanoparticles for sensing. Adv. Mater. 2019, 31, 1904385. [Google Scholar] [CrossRef]
- Amiri, I.; Rashed, A.N.Z.; Mohamed, A.E.-N.A.; Aboelazm, M.B.; Yupapin, P. Nonlinear effects with semiconductor optical amplifiers. J. Opt. Commun. 2023, 44, 11–17. [Google Scholar] [CrossRef]
- Sirleto, L.; Righini, G.C. An introduction to nonlinear integrated photonics: Structures and devices. Micromachines 2023, 14, 614. [Google Scholar] [CrossRef]
- Chekhova, M.V.; Ou, Z.Y. Nonlinear interferometers in quantum optics. Adv. Opt. Photonics 2016, 8, 104–155. [Google Scholar] [CrossRef]
- Marlow, B.L.S. Degenerate four-wave-mixing as a low-power source of squeezed light. Opt. Express 2020, 28, 38169–38183. [Google Scholar] [CrossRef]
- Powers, P.E.; Haus, J.W. Fundamentals of Nonlinear Optics; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Van Stryland, E.W.; Sheik-Bahae, M. Z-scan. In Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials; Routledge: Abingdon, UK, 2018; pp. 671–708. [Google Scholar]
- Van Stryland, E.W.; Sheik-Bahae, M. Z-scan technique for nonlinear materials characterization. In Materials Characterization and Optical Probe Techniques: A Critical Review; SPIE: Bellingham, WA, USA, 1997; Volume 10291, pp. 488–511. [Google Scholar]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Van Stryland, E.W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef]
- Saad, N.A.; Dar, M.H.; Ramya, E.; Naraharisetty SR, G.; Narayana Rao, D. Saturable and reverse saturable absorption of a Cu2O–Ag nanoheterostructure. J. Mater. Sci. 2019, 54, 188–199. [Google Scholar] [CrossRef]
- Maeda, A.; Ono, M.; Kishida, H.; Manako, T.; Sawa, A.; Kawasaki, M.; Tokura, Y.; Okamoto, H. Third-order nonlinear susceptibility spectra of CuO chain compounds investigated by the Z-scan method. Phys. Rev. B—Condens. Matter Mater. Phys. 2004, 70, 125117. [Google Scholar] [CrossRef]
- Bundulis, A.; Mihailovs, I.; Rutkis, M. Origin of the Kerr effect: Investigation of solutions by polarization-dependent Z-scan. JOSA B 2020, 37, 1806–1811. [Google Scholar] [CrossRef]
- Singh, M.R. Theory of all-optical switching based on the Kerr nonlinearity in metallic nanohybrids. Phys. Rev. A 2020, 102, 013708. [Google Scholar] [CrossRef]
- Khabibullin, V.R.; Usoltseva, L.O.; Galkina, P.A.; Galimova, V.R.; Volkov, D.S.; Mikheev, I.V.; Proskurnin, M.A. Measurement Precision and Thermal and Absorption Properties of Nanostructures in Aqueous Solutions by Transient and Steady-State Thermal-Lens Spectrometry. Physchem 2023, 3, 156–197. [Google Scholar] [CrossRef]
- Shehata, A.; Mohamed, T. Method for an accurate measurement of nonlinear refractive index in the case of high-repetition-rate femtosecond laser pulses. JOSA B 2019, 36, 1246–1251. [Google Scholar] [CrossRef]
- Ali, M.; Shehata, A.; Ashour, M.; Tawfik, W.Z.; Schuch, R.; Mohamed, T. Measuring the nonlinear optical properties of indium tin oxide thin film using femtosecond laser pulses. JOSA B 2020, 37, A139–A146. [Google Scholar] [CrossRef]
- Shimoji, Y.; Fay, A.T.; Chang, R.S.F.; Djeu, N. Direct measurement of the nonlinear refractive index of air. JOSA B 1989, 6, 1994–1998. [Google Scholar] [CrossRef]
- Herrmann, J. Theory of Kerr-lens mode locking: Role of self-focusing and radially varying gain. JOSA B 1994, 11, 498–512. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Fromager, M.; Ait-Ameur, K. About the validity of the parabolic approximation in Kerr lensing effect. Optik 2019, 193, 162986. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Van Stryland, E.W. Optical nonlinearities in the transparency region of bulk semiconductors. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 1998; Volume 58, pp. 257–318. [Google Scholar]
- Rashidian, M.; Dorranian, D. Investigation of optical limiting in nanometals. Rev. Adv. Mater. Sci. 2015, 40, 110–126. [Google Scholar]
- Jagannath, G.; Pramod, A.G.; Keshavamurthy, K.; Swetha, B.N.; Eraiah, B.; Rajaramakrishna, R.; Ramesh, P.; Hegde, V.; Prashantha, S.C.; Alhuthali, A.M.S.; et al. Nonlinear optical, optical limiting and radiation shielding features of Eu3+ activated borate glasses. Optik 2021, 232, 166563. [Google Scholar]
- Tutt, L.W.; Boggess, T.F. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog. Quantum Electron. 1993, 17, 299–338. [Google Scholar] [CrossRef]
- Manjunatha, K.B.; Bhat, R.S.; Shashidhara, A.; Kumar, H.A.; Nagashree, S. Antimicrobial and nonlinear optical studies of copper oxide nanoparticles. J. Electron. Mater. 2021, 50, 3415–3421. [Google Scholar] [CrossRef]
- Sumantha, H.S.; Suresha, B.L. Biosynthesis, characterization and nonlinear optical response of spherical flake-shaped copper oxide nanostructures. J. Nonlinear Opt. Phys. Mater. 2023, 32, 2250033. [Google Scholar] [CrossRef]
Pavg (W) at λ = 800 nm | |||
---|---|---|---|
14 mg/L | 18 mg/L | 26 mg/L | |
0.8 | 1.38 | 1.25 | 1.15 |
1 | 2.27 | 2.11 | 2.07 |
1.2 | 4.42 | 4.01 | 3.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashour, M.; Ibrahim, R.; Abd El-Salam, Y.; Abdel Samad, F.; Mahmoud, A.; Mohamed, T. Using Femtosecond Laser Light to Investigate the Concentration- and Size-Dependent Nonlinear Optical Properties of Laser-Ablated CuO Quantum Dots. Nanomaterials 2024, 14, 1674. https://doi.org/10.3390/nano14201674
Ashour M, Ibrahim R, Abd El-Salam Y, Abdel Samad F, Mahmoud A, Mohamed T. Using Femtosecond Laser Light to Investigate the Concentration- and Size-Dependent Nonlinear Optical Properties of Laser-Ablated CuO Quantum Dots. Nanomaterials. 2024; 14(20):1674. https://doi.org/10.3390/nano14201674
Chicago/Turabian StyleAshour, Mohamed, Rasha Ibrahim, Yasmin Abd El-Salam, Fatma Abdel Samad, Alaa Mahmoud, and Tarek Mohamed. 2024. "Using Femtosecond Laser Light to Investigate the Concentration- and Size-Dependent Nonlinear Optical Properties of Laser-Ablated CuO Quantum Dots" Nanomaterials 14, no. 20: 1674. https://doi.org/10.3390/nano14201674
APA StyleAshour, M., Ibrahim, R., Abd El-Salam, Y., Abdel Samad, F., Mahmoud, A., & Mohamed, T. (2024). Using Femtosecond Laser Light to Investigate the Concentration- and Size-Dependent Nonlinear Optical Properties of Laser-Ablated CuO Quantum Dots. Nanomaterials, 14(20), 1674. https://doi.org/10.3390/nano14201674