Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films
Abstract
:1. Introduction
2. Types of Ligands
2.1. Surfactants
2.2. Short Organic Ligands
2.3. Inorganic Ligands
2.4. Polymeric Ligands
3. Morphology Change of Nanoparticle-Based Films with Different Ligands
3.1. Morphologies of Films from Surfactants-Passivated Nanoparticles
3.2. Morphologies of Films from Nanoparticles Passivated with Short Organic Ligands
3.3. Morphologies of Films from Nanoparticles Passivated with Inorganic Ligands
3.4. Morphologies of Films from Nanoparticles Passivated with Polymeric Ligands
4. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Gohar, O.; Zubair Khan, M.; Bibi, I.; Bashir, N.; Tariq, U.; Bakhtiar, M.; Ramzan Abdul Karim, M.; Ali, F.; Bilal Hanif, M.; Motola, M. Nanomaterials for Advanced Energy Applications: Recent Advancements and Future Trends. Mater. Des. 2024, 241, 112930. [Google Scholar] [CrossRef]
- Anik, M.I.; Khalid Hossain, M.; Hossain, I.; Mahfuz, A.M.U.B.; Rahman, M.T.; Ahmed, I.; Khalid, C.M. Recent Progress of Magnetic Nanoparticles in Biomedical Applications: A Review. Nano Select 2021, 2, 1146–1186. [Google Scholar] [CrossRef]
- Christian, P.; Von Der Kammer, F.; Baalousha, M.; Hofmann, T. Nanoparticles: Structure, Properties, Preparation and Behaviour in Environmental Media. Ecotoxicology 2008, 17, 326–343. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.D. From Formation Mechanisms to Synthetic Methods toward Shape-Controlled Oxide Nanoparticles. Nanoscale 2013, 5, 9455–9482. [Google Scholar] [CrossRef] [PubMed]
- Fernando, A.; Weerawardene, K.L.D.M.; Karimova, N.V.; Aikens, C.M. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chem. Rev. 2015, 115, 6112–6216. [Google Scholar] [CrossRef]
- Fonash, S.J. Unique Features of the Nano-Scale. J. Nanoparticle Res. 2018, 20, 323. [Google Scholar] [CrossRef]
- Barbagiovanni, E.G.; Lockwood, D.J.; Simpson, P.J.; Goncharova, L.V. Quantum Confinement in Si and Ge Nanostructures: Theory and Experiment. Appl. Phys. Rev. 2014, 1, 11302. [Google Scholar] [CrossRef]
- Koole, R.; Groeneveld, E.; Vanmaekelbergh, D.; Meijerink, A.; De Mello Donegá, C. Size Effects on Semiconductor Nanoparticles. In Nanoparticles: Workhorses of Nanoscience; Springer: Berlin/Heidelberg, Germany, 2014; pp. 13–51. [Google Scholar]
- Campos, A.; Troc, N.; Cottancin, E.; Pellarin, M.; Weissker, H.C.; Lermé, J.; Kociak, M.; Hillenkamp, M. Plasmonic Quantum Size Effects in Silver Nanoparticles Are Dominated by Interfaces and Local Environments. Nat. Phys. 2018, 15, 275–280. [Google Scholar] [CrossRef]
- Roda-Llordes, M.; Gonzalez-Ballestero, C.; López, A.E.R.; Martínez-Pérez, M.J.; Luis, F.; Romero-Isart, O. Quantum Size Effects in the Magnetic Susceptibility of a Metallic Nanoparticle. Phys. Rev. B 2021, 104, L100407. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J. Phys. Chem. 1996, 100, 13226–13239. [Google Scholar] [CrossRef]
- Muzzio, M.; Li, J.; Yin, Z.; Delahunty, I.M.; Xie, J.; Sun, S. Monodisperse Nanoparticles for Catalysis and Nanomedicine. Nanoscale 2019, 11, 18946–18967. [Google Scholar] [CrossRef] [PubMed]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A.P. Shape Control of CdSe Nanocrystals. Nature 2000, 404, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, N.; Park, M.; Kim, B.H.; An, K.; Hyeon, T. Synthesis of Uniform Ferrimagnetic Magnetite Nanocubes. J. Am. Chem. Soc. 2009, 131, 454–455. [Google Scholar] [CrossRef]
- Oh, M.H.; Yu, T.; Yu, S.H.; Lim, B.; Ko, K.T.; Willinger, M.G.; Seo, D.H.; Kim, B.H.; Cho, M.G.; Park, J.H.; et al. Galvanic Replacement Reactions in Metal Oxide Nanocrystals. Science 2013, 340, 964–968. [Google Scholar] [CrossRef]
- Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science 2002, 298, 1759–1762. [Google Scholar] [CrossRef]
- Boles, M.A.; Ling, D.; Hyeon, T.; Talapin, D.V. The Surface Science of Nanocrystals. Nat. Mater. 2016, 15, 141–153. [Google Scholar] [CrossRef]
- Na, H.B.; Lee, I.S.; Seo, H.; Park, Y.I.; Lee, J.H.; Kim, S.W.; Hyeon, T. Versatile PEG-Derivatized Phosphine Oxide Ligands for Water-Dispersible Metal Oxide Nanocrystals. Chem. Commun. 2007, 48, 5167–5169. [Google Scholar] [CrossRef]
- Susumu, K.; Uyeda, H.T.; Medintz, I.L.; Pons, T.; Delehanty, J.B.; Mattoussi, H. Enhancing the Stability and Biological Functionalities of Quantum Dots via Compact Multifunctional Ligands. J. Am. Chem. Soc. 2007, 129, 13987–13996. [Google Scholar] [CrossRef]
- Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nat. Mater. 2005, 4, 435–446. [Google Scholar] [CrossRef]
- Gerion, D.; Pinaud, F.; Williams, S.C.; Parak, W.J.; Zanchet, D.; Weiss, S.; Alivisatos, A.P. Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. J. Phys. Chem. B 2001, 105, 8861–8871. [Google Scholar] [CrossRef]
- Mout, R.; Moyano, D.F.; Rana, S.; Rotello, V.M. Surface Functionalization of Nanoparticles for Nanomedicine. Chem. Soc. Rev. 2012, 41, 2539. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Shin, K.; Kwon, S.G.; Jang, Y.; Lee, H.S.; Lee, H.; Jun, S.W.; Lee, J.; Han, S.Y.; Yim, Y.H.; et al. Sizing by Weighing: Characterizing Sizes of Ultrasmall-Sized Iron Oxide Nanocrystals Using MALDI-TOF Mass Spectrometry. J. Am. Chem. Soc. 2013, 135, 2407–2410. [Google Scholar] [CrossRef]
- Son, Y.; Kim, B.H.; Choi, B.K.; Luo, Z.; Kim, J.; Kim, G.H.; Park, S.J.; Hyeon, T.; Mehraeen, S.; Park, J. In Situ Liquid Phase TEM of Nanoparticle Formation and Diffusion in a Phase-Separated Medium. ACS Appl. Mater. Interfaces 2022, 14, 22810–22817. [Google Scholar] [CrossRef]
- Kim, B.H.; Yang, J.; Lee, D.; Kyu Choi, B.; Hyeon, T.; Park, J. Liquid-Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles. Adv. Mater. 2018, 30, 1703316. [Google Scholar] [CrossRef]
- Kim, B.H.; Heo, J.; Kim, S.; Reboul, C.F.; Chun, H.; Kang, D.; Bae, H.; Hyun, H.; Lim, J.; Lee, H.; et al. Critical Differences in 3D Atomic Structure of Individual Ligand-Protected Nanocrystals in Solution. Science 2020, 368, 60. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, B.; Sehgal, R.; Wani, M.F.; Kumar, D.; Sharma, M.D.; Singh, V.; Sehgal, R.; Kumar, V. Advantages and Disadvantages of Metal Nanoparticles. In Nanoparticles Reinforced Metal Nanocomposites: Mechanical Performance and Durability; Springer Nature: Singapore, 2023; pp. 209–235. [Google Scholar]
- Feser, J.P.; Chan, E.M.; Majumdar, A.; Segalman, R.A.; Urban, J.J. Ultralow Thermal Conductivity in Polycrystalline CdSe Thin Films with Controlled Grain Size. Nano Lett. 2013, 13, 2122–2127. [Google Scholar] [CrossRef]
- Brown, P.R.; Kim, D.; Lunt, R.R.; Zhao, N.; Bawendi, M.G.; Grossman, J.C.; Bulović, V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange. ACS Nano 2014, 8, 5863–5872. [Google Scholar] [CrossRef]
- Ondry, J.C.; Robbennolt, S.; Kang, H.; Yan, Y.; Tolbert, S.H. A Room-Temperature, Solution Phase Method for the Synthesis of Mesoporous Metal Chalcogenide Nanocrystal-Based Thin Films with Precisely Controlled Grain Sizes. Chem. Mater. 2016, 28, 6105–6117. [Google Scholar] [CrossRef]
- Engel, J.H.; Alivisatos, A.P. Postsynthetic Doping Control of Nanocrystal Thin Films: Balancing Space Charge to Improve Photovoltaic Efficiency. Chem. Mater. 2014, 26, 153–162. [Google Scholar] [CrossRef]
- Alvarado, J.A.; Maldonado, A.; Juarez, H.; Pacio, M. Synthesis of Colloidal ZnO Nanoparticles and Deposit of Thin Films by Spin Coating Technique. J. Nanomater. 2013, 2013, 903191. [Google Scholar] [CrossRef]
- Trabelsi, F.; Mercier, F.; Blanquet, E.; Crisci, A.; Salhi, R. Synthesis of Upconversion TiO2:Er3+-Yb3+ Nanoparticles and Deposition of Thin Films by Spin Coating Technique. Ceram. Int. 2020, 46, 28183–28192. [Google Scholar] [CrossRef]
- Baikousi, M.; Kostoula, O.; Panagiotopoulos, I.; Bakas, T.; Douvalis, A.P.; Koutselas, I.; Bourlinos, A.B.; Karakassides, M.A. Magnetic/SiO2 Nanocomposite Thin Films Prepared by Sol–Gel Dip Coating Modified Method. Thin Solid Films 2011, 520, 159–165. [Google Scholar] [CrossRef]
- Faustini, M.; Capobianchi, A.; Varvaro, G.; Grosso, D. Highly Controlled Dip-Coating Deposition of Fct FePt Nanoparticles from Layered Salt Precursor into Nanostructured Thin Films: An Easy Way to Tune Magnetic and Optical Properties. Chem. Mater. 2012, 24, 1072–1079. [Google Scholar] [CrossRef]
- Vidor, F.F.; Meyers, T.; Wirth, G.I.; Hilleringmann, U. ZnO Nanoparticle Thin-Film Transistors on Flexible Substrate Using Spray-Coating Technique. Microelectron. Eng. 2016, 159, 155–158. [Google Scholar] [CrossRef]
- Ranga Rao, A.; Dutta, V. Low-Temperature Synthesis of TiO2 Nanoparticles and Preparation of TiO2 Thin Films by Spray Deposition. Solar Energy Materials and Solar Cells 2007, 91, 1075–1080. [Google Scholar] [CrossRef]
- Schulz, D.L.; Pehnt, M.; Rose, D.H.; Urgiles, E.; Cahill, A.F.; Niles, D.W.; Jones, K.M.; Ellingson, R.J.; Curtis, C.J.; Ginley, D.S. CdTe Thin Films from Nanoparticle Precursors by Spray Deposition. Chem. Mater. 1997, 9, 889–900. [Google Scholar] [CrossRef]
- Lee, W.C.; Kim, B.H.; Choi, S.; Takeuchi, S.; Park, J. Liquid Cell Electron Microscopy of Nanoparticle Self-Assembly Driven by Solvent Drying. J. Phys. Chem. Lett. 2017, 8, 647–654. [Google Scholar] [CrossRef]
- Winslow, S.W.; Swan, J.W.; Tisdale, W.A. The Importance of Unbound Ligand in Nanocrystal Superlattice Formation. J. Am. Chem. Soc. 2020, 142, 9675–9685. [Google Scholar] [CrossRef]
- Lee, J.S. Recent Progress in Gold Nanoparticle-Based Non-Volatile Memory Devices. Gold Bull. 2010, 43, 189–199. [Google Scholar] [CrossRef]
- Nazir, S.; Zhang, J.M.; Junaid, M.; Saleem, S.; Ali, A.; Ullah, A.; Khan, S. Metal-Based Nanoparticles: Basics, Types, Fabrications and Their Electronic Applications. Z. Phys. Chem. 2024, 238, 965–995. [Google Scholar] [CrossRef]
- Yang, Y.; Han, J.; Huang, J.; Sun, J.; Lin Wang, Z.; Seo, S.; Sun, Q.; Yang, Y.; Han, J.; Huang, J.; et al. Stretchable Energy-Harvesting Tactile Interactive Interface with Liquid-Metal-Nanoparticle-Based Electrodes. Adv. Funct. Mater. 2020, 30, 1909652. [Google Scholar] [CrossRef]
- Heo, S.; Kim, J.; Ong, G.K.; Milliron, D.J. Template-Free Mesoporous Electrochromic Films on Flexible Substrates from Tungsten Oxide Nanorods. Nano Lett. 2017, 17, 5756–5761. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Staller, C.M.; Cho, S.H.; Heo, S.; Garrison, C.E.; Kim, J.; Milliron, D.J. High Mobility in Nanocrystal-Based Transparent Conducting Oxide Thin Films. ACS Nano 2018, 12, 3200–3208. [Google Scholar] [CrossRef] [PubMed]
- Parizi, S.S.; Caruntu, D.; Rotaru, A.; Caruntu, G. High-k BaTiO3 Nanoparticle Films as Gate Dielectrics for Flexible Field Effect Transistors. Mater. Adv. 2022, 3, 6474–6484. [Google Scholar] [CrossRef]
- Iskandar, F. Nanoparticle Processing for Optical Applications—A Review. Adv. Powder Technol. 2009, 20, 283–292. [Google Scholar] [CrossRef]
- Li, C.; Liu, X.; Du, X.; Yang, T.; Li, Q.; Jin, L. Preparation and Optical Properties of Nanostructure Thin Films. Appl. Nanosci. 2021, 11, 1967–1976. [Google Scholar] [CrossRef]
- Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; et al. The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem. Rev. 2019, 119, 4819. [Google Scholar] [CrossRef]
- Neouze, M.A.; Schubert, U. Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands. Monatsh. Chem. 2008, 139, 183–195. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, M.; Pan, Z.; Biesold, G.M.; Liang, S.; Rao, H.; Lin, Z.; Zhong, X. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chem. Rev. 2022, 122, 4091–4162. [Google Scholar] [CrossRef]
- Calvin, J.J.; Brewer, A.S.; Alivisatos, A.P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat. Synth. 2022, 1, 127–137. [Google Scholar] [CrossRef]
- Heinz, H.; Pramanik, C.; Heinz, O.; Ding, Y.; Mishra, R.K.; Marchon, D.; Flatt, R.J.; Estrela-Lopis, I.; Llop, J.; Moya, S.; et al. Nanoparticle Decoration with Surfactants: Molecular Interactions, Assembly, and Applications. Surf. Sci. Rep. 2017, 72, 1–58. [Google Scholar] [CrossRef]
- Kanelidis, I.; Kraus, T. The Role of Ligands in Coinage-Metal Nanoparticles for Electronics. Beilstein J. Nanotechnol. 2017, 8, 2625–2639. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kotov, N.A. Charge Transport Dilemma of Solution-Processed Nanomaterials. Chem. Mater. 2014, 26, 134–152. [Google Scholar] [CrossRef]
- Bashouti, M.Y.; De La Zerda, A.S.; Geva, D.; Haick, H. Designing Thin Film-Capped Metallic Nanoparticles Configurations for Sensing Applications. J. Phys. Chem. C 2014, 118, 1903–1909. [Google Scholar] [CrossRef]
- Kister, T.; Maurer, J.H.M.; Gonzaíez-García, L.; Kraus, T. Ligand-Dependent Nanoparticle Assembly and Its Impact on the Printing of Transparent Electrodes. ACS Appl. Mater. Interfaces 2018, 10, 6079–6083. [Google Scholar] [CrossRef]
- Cho, J.; Caruso, F. Investigation of the Interactions between Ligand-Stabilized Gold Nanoparticles and Polyelectrolyte Multilayer Films. Chem. Mater. 2005, 17, 4547–4553. [Google Scholar] [CrossRef]
- Mehla, S.; Das, J.; Jampaiah, D.; Periasamy, S.; Nafady, A.; Bhargava, S.K. Recent Advances in Preparation Methods for Catalytic Thin Films and Coatings. Catal. Sci. Technol. 2019, 9, 3582–3602. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Qi, F.; Lin, F.R.; Jen, A.K.Y. Self-Assembled Monolayers for Interfacial Engineering in Solution-Processed Thin-Film Electronic Devices: Design, Fabrication, and Applications. Chem. Rev. 2024, 124, 2138–2204. [Google Scholar] [CrossRef]
- Li, D.; Lai, W.-Y.; Zhang, Y.-Z.; Huang, W. Printable Transparent Conductive Films for Flexible Electronics. Adv. Mater. 2018, 30, 1704738. [Google Scholar] [CrossRef]
- Lee, J.; Petruska, M.A.; Sun, S. Surface Modification and Assembly of Transparent Indium Tin Oxide Nanocrystals for Enhanced Conductivity. J. Phys. Chem. C 2014, 118, 12017–12021. [Google Scholar] [CrossRef]
- Kymakis, E.; Spyropoulos, G.D.; Fernandes, R.; Kakavelakis, G.; Kanaras, A.G.; Stratakis, E. Plasmonic Bulk Heterojunction Solar Cells: The Role of Nanoparticle Ligand Coating. ACS Photonics 2015, 2, 714–723. [Google Scholar] [CrossRef]
- Moulé, A.J.; Chang, L.; Thambidurai, C.; Vidu, R.; Stroeve, P. Hybrid Solar Cells: Basic Principles and the Role of Ligands. J. Mater. Chem. 2012, 22, 2351–2368. [Google Scholar] [CrossRef]
- Ko, Y.; Kwon, H.; Lee, S.W.; Cho, J.; Ko, Y.; Kwon, C.H.; Cho, J.; Lee, S.W. Nanoparticle-Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layer-by-Layer Assembly. Adv. Mater. 2020, 32, 2001924. [Google Scholar] [CrossRef]
- Song, Y.; Lee, S.; Ko, Y.; Huh, J.; Kim, Y.; Yeom, B.; Moon, J.H.; Cho, J.; Song, Y.; Lee, S.; et al. Charge-Transfer Effects of Organic Ligands on Energy Storage Performance of Oxide Nanoparticle-Based Electrodes. Adv. Funct. Mater. 2021, 32, 2106438. [Google Scholar] [CrossRef]
- Farheen, R.; Ahmed, S.M.; Mohan, S.B.; Ankanathappa, S.M.; Shivanna, M.; Viswanathan, P.; Chandrashekara, H.; Manjunatha, S.; Shivanna Vidya, Y.; Chandrasekhar, A.; et al. Spinach-Mediated Green Synthesized NiFe2O4 Nanoparticle-Based Triboelectric Nanogenerator: A Smart Tollgate Controller. ACS Appl. Electron. Mater. 2023, 5, 5885–5897. [Google Scholar]
- Ling, D.; Hackett, M.J.; Hyeon, T. Surface Ligands in Synthesis, Modification, Assembly and Biomedical Applications of Nanoparticles. Nano Today 2014, 9, 457–477. [Google Scholar] [CrossRef]
- Nath, S.; Jana, S.; Pradhan, M.; Pal, T. Ligand-Stabilized Metal Nanoparticles in Organic Solvent. J. Colloid Interface Sci. 2010, 341, 333–352. [Google Scholar] [CrossRef]
- Sperling, R.A.; Parak, W.J. Surface Modification, Functionalization and Bioconjugation of Colloidal Inorganic Nanoparticles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. Eng. Sci. 2010, 368, 1333–1383. [Google Scholar]
- Nam, J.; Won, N.; Bang, J.; Jin, H.; Park, J.; Jung, S.; Jung, S.; Park, Y.; Kim, S. Surface Engineering of Inorganic Nanoparticles for Imaging and Therapy. Adv. Drug Deliv. Rev. 2013, 65, 622–648. [Google Scholar] [CrossRef]
- Lu, L.; Zou, S.; Fang, B. The Critical Impacts of Ligands on Heterogeneous Nanocatalysis: A Review. ACS Catal. 2021, 11, 6020–6058. [Google Scholar] [CrossRef]
- Rossi, L.M.; Fiorio, J.L.; Garcia, M.A.S.; Ferraz, C.P. The Role and Fate of Capping Ligands in Colloidally Prepared Metal Nanoparticle Catalysts. Dalton Trans. 2018, 47, 5889–5915. [Google Scholar] [CrossRef]
- Lattuada, M.; Hatton, T.A. Functionalization of Monodisperse Magnetic Nanoparticles. Langmuir 2007, 23, 2158–2168. [Google Scholar] [CrossRef]
- Kim, D.; Lee, D.C. Surface Ligands as Permeation Barrier in the Growth and Assembly of Anisotropic Semiconductor Nanocrystals. J. Phys. Chem. Lett. 2020, 11, 2647–2657. [Google Scholar] [CrossRef]
- Pradhan, N.; Reifsnyder, D.; Xie, R.; Aldana, J.; Peng, X. Surface Ligand Dynamics in Growth of Nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509. [Google Scholar] [CrossRef]
- Park, J.; Joo, J.; Soon, G.K.; Jang, Y.; Hyeon, T. Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660. [Google Scholar] [CrossRef]
- Nag, A.; Zhang, H.; Janke, E.; Talapin, D.V. Inorganic Surface Ligands for Colloidal Nanomaterials. Z. Phys. Chem. 2015, 229, 85–107. [Google Scholar] [CrossRef]
- Cadavid, D.; Ortega, S.; Illera, S.; Liu, Y.; Ibáñez, M.; Shavel, A.; Zhang, Y.; Li, M.; López, A.M.; Noriega, G.; et al. Influence of the Ligand Stripping on the Transport Properties of Nanoparticle-Based PbSe Nanomaterials. ACS Appl. Energy. Mater. 2020, 3, 2120–2129. [Google Scholar] [CrossRef]
- Otelaja, O.O.; Ha, D.H.; Ly, T.; Zhang, H.; Robinson, R.D. Highly Conductive Cu2−XS Nanoparticle Films through Room-Temperature Processing and an Order of Magnitude Enhancement of Conductivity via Electrophoretic Deposition. ACS Appl. Mater. Interfaces 2014, 6, 18911–18920. [Google Scholar] [CrossRef]
- Owen, J. The Coordination Chemistry of Nanocrystal Surfaces. Science 2015, 347, 615–616. [Google Scholar] [CrossRef]
- Wächtler, E.; Gericke, R.; Brendler, E.; Gerke, B.; Langer, T.; Pöttgen, R.; Zhechkov, L.; Heine, T.; Wagler, J. Group 10–Group 14 Metal Complexes [E–TM] IV: The Role of the Group 14 Site as an L, X and Z-Type Ligand. Dalton Trans. 2016, 45, 14252–14264. [Google Scholar] [CrossRef]
- Wächtler, E.; Gericke, R.; Block, T.; Pöttgen, R.; Wagler, J. Trivalent Antimony as L-, X-, and Z-Type Ligand: The Full Set of Possible Coordination Modes in Pt-Sb Bonds. Inorg. Chem. 2020, 59, 15541–15552. [Google Scholar] [CrossRef]
- Sun, H.; Buhro, W.E. Contrasting Ligand-Exchange Behavior of Wurtzite and Zinc-Blende Cadmium Telluride Nanoplatelets. Chem. Mater. 2021, 33, 1683–1697. [Google Scholar] [CrossRef]
- Kim, D.; Shin, K.; Kwon, S.G.; Hyeon, T. Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Adv. Mater. 2018, 30, 1802309. [Google Scholar] [CrossRef]
- Park, Y.I.; Piao, Y.; Lee, N.; Yoo, B.; Kim, B.H.; Choi, S.H.; Hyeon, T. Transformation of Hydrophobic Iron Oxide Nanoparticles to Hydrophilic and Biocompatible Maghemite Nanocrystals for Use as Highly Efficient MRI Contrast Agent. J. Mater. Chem. 2011, 21, 11472–11477. [Google Scholar] [CrossRef]
- Kwon, H.J.; Shin, K.; Soh, M.; Chang, H.; Kim, J.; Lee, J.; Ko, G.; Kim, B.H.; Kim, D.; Hyeon, T. Large-Scale Synthesis and Medical Applications of Uniform-Sized Metal Oxide Nanoparticles. Adv. Mater. 2018, 30, 1704290. [Google Scholar] [CrossRef]
- Kim, J.; Ko, W.; Yoo, J.M.; Paidi, V.K.; Jang, H.Y.; Shepit, M.; Lee, J.; Chang, H.; Lee, H.S.; Jo, J.; et al. Structural Insights into Multi-Metal Spinel Oxide Nanoparticles for Boosting Oxygen Reduction Electrocatalysis. Adv. Mater. 2022, 34, 2270065. [Google Scholar] [CrossRef]
- Hou, Y.; Yu, J.; Gao, S. Solvothermal reduction synthesis and characterization of superparamagnetic magnetic nanoparticles. J. Mater. Chem. 2003, 13, 1983–1987. [Google Scholar] [CrossRef]
- Soultanidis, N.; Zhou, W.; Kiely, C.J.; Wong, M.S. Solvothermal synthesis of ultrasmall tungsten oxide nanoparticles. Langmuir 2012, 28, 17771–17777. [Google Scholar] [CrossRef]
- Soh, M.; Kang, D.-W.; Jeong, H.-G.; Kim, D.; Kim, D.Y.; Yang, W.; Song, C.; Baik, S.; Choi, I.-Y.; Ki, S.-K.; et al. Ceria–Zirconia Nanoparticles as an Enhanced Multi-Antioxidant for Sepsis Treatment. Angew. Chem. 2017, 129, 11557–11561. [Google Scholar] [CrossRef]
- Ma, H.; Luo, M.; Dai, L.L. Influences of Surfactant and Nanoparticle Assembly on Effective Interfacial Tensions. Phys. Chem. Chem. Phys. 2008, 10, 2207–2213. [Google Scholar] [CrossRef]
- Shaban, S.M.; Kang, J.; Kim, D.H. Surfactants: Recent Advances and Their Applications. Compos. Commun. 2020, 22, 100537. [Google Scholar] [CrossRef]
- Leekumjorn, S.; Gullapalli, S.; Wong, M.S. Understanding the Solvent Polarity Effects on Surfactant-Capped Nanoparticles. J. Phys. Chem. B 2012, 116, 13063–13070. [Google Scholar] [CrossRef]
- Li, N.; Wen, X.; Liu, J.; Wang, B.; Zhan, Q.; He, S. Yb3+-enhanced UCNP@SiO2 nanocomposites for consecutive imaging, photothermal-controlled drug delivery and cancer therapy. Opt. Mater. Express 2016, 6, 1161. [Google Scholar] [CrossRef]
- Takami, S.; Sato, T.; Mousavand, T.; Ohara, S.; Umetsu, M.; Adschiri, T. Hydrothermal Synthesis of Surface-Modified Iron Oxide Nanoparticles. Mater. Lett. 2007, 61, 4769–4772. [Google Scholar] [CrossRef]
- Salafranca, J.; Gazquez, J.; Pérez, N.; Labarta, A.; Pantelides, S.T.; Pennycook, S.J.; Batlle, X.; Varela, M. Surfactant Organic Molecules Restore Magnetism in Metal-Oxide Nanoparticle Surfaces. Nano Lett. 2012, 12, 2499–2503. [Google Scholar] [CrossRef]
- Soares, P.I.P.; Alves, A.M.R.; Pereira, L.C.J.; Coutinho, J.T.; Ferreira, I.M.M.; Novo, C.M.M.; Borges, J.P.M.R. Effects of Surfactants on the Magnetic Properties of Iron Oxide Colloids. J. Colloid Interface Sci. 2014, 419, 46–51. [Google Scholar] [CrossRef]
- Harris, R.A.; Shumbula, P.M.; Van Der Walt, H. Analysis of the Interaction of Surfactants Oleic Acid and Oleylamine with Iron Oxide Nanoparticles through Molecular Mechanics Modeling. Langmuir 2015, 31, 3934–3943. [Google Scholar] [CrossRef]
- Wu, N.; Fu, L.; Su, M.; Aslam, M.; Wong, K.C.; Dravid, V.P. Interaction of Fatty Acid Monolayers with Cobalt Nanoparticles. Nano Lett. 2004, 4, 383–386. [Google Scholar] [CrossRef]
- LoPachin, R.M.; Gavin, T.; DeCaprio, A.; Barber, D.S. Application of the Hard and Soft, Acids and Bases (HSAB) Theory to Toxicant—Target Interactions. Chem. Res. Toxicol. 2012, 25, 239–251. [Google Scholar] [CrossRef]
- Qiao, L.; Swihart, M.T. Solution-Phase Synthesis of Transition Metal Oxide Nanocrystals: Morphologies, Formulae, and Mechanisms. Adv. Colloid Interface Sci. 2017, 244, 199–266. [Google Scholar] [CrossRef]
- Kim, B.H.; Lee, N.; Kim, H.; An, K.; Park, Y.I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S.G.; Na, H.B.; et al. Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T 1 Magnetic Resonance Imaging Contrast Agents. J. Am. Chem. Soc. 2011, 133, 12624–12631. [Google Scholar] [CrossRef]
- Park, J.; Lee, E.; Hwang, N.-M.; Kang, M.; Kim, S.C.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; et al. One-Nanometer-Scale Size-Controlled Synthesis of Monodisperse Magnetic Iron Oxide Nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 2872–2877. [Google Scholar] [CrossRef]
- Joo, J.; Kwon, S.G.; Yu, T.; Cho, M.; Lee, J.; Yoon, J.; Hyeon, T. Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic Sol-Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli. J. Phys. Chem. B 2005, 109, 15297–15302. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Mohandes, F.; Davar, F.; Saberyan, K. Fabrication of Chain-like Mn2O3 Nanostructures via Thermal Decomposition of Manganese Phthalate Coordination Polymers. Appl. Surf. Sci. 2009, 256, 1476–1480. [Google Scholar] [CrossRef]
- Saji, V.S.; Pyo, M. Dye Sensitized Solar Cell of TiO2 Nanoparticle/Nanorod Composites Prepared via Low-Temperature Synthesis in Oleic Acid. Thin Solid Films 2010, 518, 6542–6546. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, H.; Jiang, M.; Lin, L.; Fu, T.; Dai, X.; Zhang, Z.; Niu, Y.; Cao, H.; Jin, Y.; et al. Entropic Ligands for Nanocrystals: From Unexpected Solution Properties to Outstanding Processability. Nano Lett. 2016, 16, 2133–2138. [Google Scholar] [CrossRef]
- Shrestha, A.; Spooner, N.A.; Qiao, S.Z.; Dai, S. Mechanistic Insight into the Nucleation and Growth of Oleic Acid Capped Lead Sulphide Quantum Dots. Phys. Chem. Chem. Phys. 2016, 18, 14055–14062. [Google Scholar] [CrossRef]
- Baum, F.; da Silva, M.F.; Linden, G.; Feijo, D.; Rieder, E.S.; Santos, M.J.L. Growth Dynamics of Zinc Selenide Quantum Dots: The Role of Oleic Acid Concentration and Synthesis Temperature on Driving Optical Properties. J. Nanoparticle Res. 2019, 21, 42. [Google Scholar] [CrossRef]
- Bullen, C.R.; Mulvaney, P. Nucleation and Growth Kinetics of CdSe Nanocrystals in Octadecene. Nano Lett. 2004, 4, 2303–2307. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Y.; Yang, G.; Zhang, S.; Yu, L.; Zhang, P. Tribological Properties of Oleic Acid-Modified Zinc Oxide Nanoparticles as the Lubricant Additive in Poly-Alpha Olefin and Diisooctyl Sebacate Base Oils. RSC Adv. 2016, 6, 69836–69844. [Google Scholar] [CrossRef]
- Hyeon, T.; Lee, S.S.; Park, J.; Chung, Y.; Na, H.B. Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. J. Am. Chem. Soc. 2001, 123, 12798–12801. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Kim, B.H.; Jeong, H.Y.; Moon, J.H.; Park, M.; Shin, K.; Chae, S.I.; Lee, J.; Kang, T.; Choi, B.K.; et al. Molecular-Level Understanding of Continuous Growth from Iron-Oxo Clusters to Iron Oxide Nanoparticles. J. Am. Chem. Soc. 2019, 141, 7037–7045. [Google Scholar] [CrossRef]
- Park, J.; An, K.; Hwang, Y.; Park, J.E.G.; Noh, H.J.; Kim, J.Y.; Park, J.H.; Hwang, N.M.; Hyeon, T. Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals. Nat. Mater. 2004, 3, 891–895. [Google Scholar] [CrossRef]
- Jana, N.R.; Chen, Y.; Peng, X. Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach. Chem. Mater. 2004, 16, 3931–3935. [Google Scholar] [CrossRef]
- An, K.; Lee, N.; Park, J.; Kim, S.C.; Hwang, Y.; Park, J.G.; Kim, J.Y.; Park, J.H.; Han, M.J.; Yu, J.; et al. Synthesis, Characterization, and Self-Assembly of Pencil-Shaped CoO Nanorods. J. Am. Chem. Soc. 2006, 128, 9753–9760. [Google Scholar] [CrossRef]
- Kim, D.; Park, J.; An, K.; Yang, N.K.; Park, J.G.; Hyeon, T. Synthesis of Hollow Iron Nanoframes. J. Am. Chem. Soc. 2007, 129, 5812–5813. [Google Scholar] [CrossRef]
- Chang, H.; Kim, B.H.; Lim, S.G.; Baek, H.; Park, J.; Hyeon, T. Role of the Precursor Composition in the Synthesis of Metal Ferrite Nanoparticles. Inorg. Chem. 2021, 60, 4261–4268. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Liz-Marzán, L.M. Oleylamine in Nanoparticle Synthesis. Chem. Mater. 2013, 25, 1465–1476. [Google Scholar] [CrossRef]
- Park, J.; Kang, E.; Son, S.U.; Park, M.H.; Lee, M.K.; Kim, J.; Kim, K.W.; Noh, H.-J.; Park, J.-H.; Bae, C.J.; et al. Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction. Adv. Mater. 2005, 17, 429–434. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, W.; Sun, X.; Zhu, W.; Li, X.Z.; Sellmyer, D.J.; Sun, S. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) Nanoparticles Prepared from a Facile Oleylamine Reduction of Metal Salts. Nano Lett. 2014, 14, 2778–2782. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, S.; Chow, S.; Han, M.Y. Modulation of the Morphology of ZnO Nanostructures via Aminolytic Reaction: From Nanorods to Nanosquamas. Langmuir 2006, 22, 6335–6340. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Zeng, H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2004, 124, 8424–8425. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, E.; Jansat, S.; Philippot, K.; Lecante, P.; Gomez, M.; Masdeu-Bulto, A.M.; Chaudret, B.J. Influence of organic ligands on the stabilization of palladium nanoparticles. Organometal. Chem. 2004, 689, 4601–4610. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Menelaou, M.; Fiuza-Maneiro, N.; Zheng, G.; Wei, S.; Pérez-Juste, J.; Polavarapu, L.; Sofer, Z. Oleic Acid/Oleylamine Ligand Pair: A Versatile Combination in the Synthesis of Colloidal Nanoparticles. Nanoscale Horiz. 2022, 7, 941–1015. [Google Scholar] [CrossRef]
- Polarz, S. Shape Matters: Anisotropy of the Morphology of Inorganic Colloidal Particles—Synthesis and Function. Adv. Funct. Mater. 2011, 21, 3214–3230. [Google Scholar] [CrossRef]
- Dinh, C.-T.; Nguyen, T.-D.; Kleitz, F.; Do, T.-O. Shape-controlled synthesis of highly crystalline titania nanocrystals. ACS Nano 2009, 3, 3737–3743. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, F.; Dai, Q.; Tang, J. Magnetic Properties and Photovoltaic Applications of ZnO:Mn Nanocrystals. J. Colloid Interface Sci. 2018, 517, 194–203. [Google Scholar] [CrossRef]
- Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Mulvaney, P. Gold Nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev. 2005, 249, 1870–1901. [Google Scholar] [CrossRef]
- Sau, T.K.; Murphy, C.J. Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution. J. Am. Chem. Soc. 2004, 126, 8648–8649. [Google Scholar] [CrossRef]
- Gao, J.; Bender, C.M.; Murphy, C.J. Dependence of the Gold Nanorod Aspect Ratio on the Nature of the Directing Surfactant in Aqueous Solution. Langmuir 2003, 19, 9065–9070. [Google Scholar] [CrossRef]
- Vassalini, I.; Rotunno, E.; Lazzarini, L.; Alessandri, I. “Stainless” Gold Nanorods: Preserving Shape, Optical Properties, and SERS Activity in Oxidative Environment. ACS Appl. Mater. Interfaces 2015, 7, 18794–18802. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Juste, J.; Liz-Marzán, L.M.; Carnie, S.; Chan, D.Y.C.; Mulvaney, P. Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. Adv. Funct. Mater. 2004, 14, 571–579. [Google Scholar] [CrossRef]
- Chen, L.; Ji, F.; Xu, Y.; He, L.; Mi, Y.; Bao, F.; Sun, B.; Zhang, X.; Zhang, Q. High-Yield Seedless Synthesis of Triangular Gold Nanoplates through Oxidative Etching. Nano Lett. 2014, 14, 7201–7206. [Google Scholar] [CrossRef]
- Bratlie, K.M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G.A. Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity. Nano Lett. 2007, 7, 3097–3101. [Google Scholar] [CrossRef]
- Cerra, S.; Carlini, L.; Salamone, T.A.; Hajareh Haghighi, F.; Mercurio, M.; Pennacchi, B.; Sappino, C.; Battocchio, C.; Nottola, S.; Matassa, R.; et al. Noble Metal Nanoparticles Networks Stabilized by Rod-Like Organometallic Bifunctional Thiols. ChemistrySelect 2023, 8, e202300874. [Google Scholar] [CrossRef]
- Goulet, P.J.G.; Lennox, R.B. New Insights into Brust-Schiffrin Metal Nanoparticle Synthesis. J. Am. Chem. Soc. 2010, 132, 9582–9584. [Google Scholar] [CrossRef]
- Perala, S.R.K.; Kumar, S. On the Mechanism of Metal Nanoparticle Synthesis in the Brust-Schiffrin Method. Langmuir 2013, 29, 9863–9873. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid–Liquid System. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802. [Google Scholar] [CrossRef]
- Cho, H.; Jin, A.; Kim, S.J.; Kwon, Y.; Lee, E.; Shin, J.J.; Kim, B.H. Conversion of Polyethylene to Low-Molecular-Weight Oil Products at Moderate Temperatures Using Nickel/Zeolite Nanocatalysts. Materials 2024, 17, 1863. [Google Scholar] [CrossRef]
- Burgos, J.C.; Mejía, S.M.; Metha, G.F. Effect of Charge and Phosphine Ligands on the Electronic Structure of the Au8 Cluster. ACS Omega 2019, 4, 9169–9180. [Google Scholar] [CrossRef] [PubMed]
- Mahato, K.; Nagpal, S.; Shah, M.A.; Srivastava, A.; Maurya, P.K.; Roy, S.; Jaiswal, A.; Singh, R.; Chandra, P. Gold Nanoparticle Surface Engineering Strategies and Their Applications in Biomedicine and Diagnostics. 3 Biotech 2019, 9, 57. [Google Scholar] [CrossRef] [PubMed]
- Wand, P.; Bartl, J.D.; Heiz, U.; Tschurl, M.; Cokoja, M. Functionalization of Small Platinum Nanoparticles with Amines and Phosphines: Ligand Binding Modes and Particle Stability. J. Colloid Interface Sci. 2016, 478, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Jiang, J.; Yuan, C.; Zhang, C.; Liu, M. Palladium Nanoparticles Stabilized by Phosphine Ligand for Aqueous Phase Room Temperature Suzuki-Miyaura Coupling. Tetrahedron Lett. 2017, 58, 1142–1145. [Google Scholar] [CrossRef]
- Wegner, S.; Janiak, C. Metal Nanoparticles in Ionic Liquids. Topics Curr. Chem. 2017, 375, 65. [Google Scholar] [CrossRef]
- Chen, M.; Feng, Y.G.; Wang, X.; Li, T.-C.; Zhang, J.Y.; Qian, D.J. Silver nanoparticles capped by oleylamine: Formation, growth, and self-organization. Langmuir 2007, 23, 5296–5304. [Google Scholar] [CrossRef]
- Cid, A.; Simal-Gandara, J. Synthesis, Characterization, and Potential Applications of Transition Metal Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2019, 30, 1011–1032. [Google Scholar] [CrossRef]
- Ramimoghadam, D.; Bagheri, S.; Hamid, S.B.A. Progress in Electrochemical Synthesis of Magnetic Iron Oxide Nanoparticles. J. Magn. Magn. Mater. 2014, 368, 207–229. [Google Scholar] [CrossRef]
- Kus, M.; Alic, T.Y.; Kirbiyik, C.; Baslak, C.; Kara, K.; Kara, D.A. Synthesis of Nanoparticles. In Handbook of Nanomaterials for Industrial Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 392–429. [Google Scholar]
- El Seoud, O.A.; Keppeler, N.; Malek, N.I.; Galgano, P.D. Ionic Liquid-Based Surfactants: Recent Advances in Their Syntheses, Solution Properties, and Applications. Polymers 2021, 13, 1100. [Google Scholar] [CrossRef]
- Fu, W.F.; Shi, Y.; Wang, L.; Shi, M.M.; Li, H.Y.; Chen, H.Z. A Green, Low-Cost, and Highly Effective Strategy to Enhance the Performance of Hybrid Solar Cells: Post-Deposition Ligand Exchange by Acetic Acid. Sol. Energy Mater. Sol. Cells 2013, 117, 329–335. [Google Scholar] [CrossRef]
- Si, K.J.; Chen, Y.; Shi, Q.; Cheng, W. Nanoparticle Superlattices: The Roles of Soft Ligands. Adv. Sci. 2018, 5, 1700179. [Google Scholar] [CrossRef] [PubMed]
- Stemplinger, S.; Causse, J.; Prévost, S.; Pellet-Rostaing, S.; Zemb, T.; Horinek, D. Short-Chain Branched Sulfosuccinate as a Missing Link between Surfactants and Hydrotropes. Phys. Chem. Chem. Phys. 2022, 24, 11353–11361. [Google Scholar] [CrossRef] [PubMed]
- Khomutov, G.B.; Koksharov, Y.A. Effects of Organic Ligands, Electrostatic and Magnetic Interactions in Formation of Colloidal and Interfacial Inorganic Nanostructures. Adv. Colloid Interface Sci. 2006, 122, 119–147. [Google Scholar] [CrossRef] [PubMed]
- Barbalinardo, M.; Ori, G.; Lungaro, L.; Caio, G.; Migliori, A.; Gentili, D. Direct Cationization of Citrate-Coated Gold and Silver Nanoparticles. J. Phys. Chem. C 2024, 38, 16220–16226. [Google Scholar] [CrossRef]
- Wagener, P.; Schwenke, A.; Barcikowski, S. How Citrate Ligands Affect Nanoparticle Adsorption to Microparticle Supports. Langmuir 2012, 28, 6132–6140. [Google Scholar] [CrossRef]
- Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of Nanoparticles in Biomedical Imaging. Nanoscale 2019, 11, 799–819. [Google Scholar] [CrossRef]
- Davis, K.; Cole, B.; Ghelardini, M.; Powell, B.A.; Mefford, O.T. Quantitative Measurement of Ligand Exchange with Small-Molecule Ligands on Iron Oxide Nanoparticles via Radioanalytical Techniques. Langmuir 2016, 32, 13716–13727. [Google Scholar] [CrossRef]
- Doyen, M.; Bartik, K.; Bruylants, G. UV–Vis and NMR Study of the Formation of Gold Nanoparticles by Citrate Reduction: Observation of Gold–Citrate Aggregates. J. Colloid Interface Sci 2013, 399, 1–5. [Google Scholar] [CrossRef]
- Canzi, G.; Mrse, A.A.; Kubiak, C.P. Diffusion-Ordered NMR Spectroscopy as a Reliable Alternative to TEM for Determining the Size of Gold Nanoparticles in Organic Solutions. J. Phys. Chem. C 2011, 115, 7972–7978. [Google Scholar] [CrossRef]
- Ahn, J.; Jeon, S.; Lee, W.S.; Woo, H.K.; Kim, D.; Bang, J.; Oh, S.J. Chemical Effect of Halide Ligands on the Electromechanical Properties of Ag Nanocrystal Thin Films for Wearable Sensors. J. Phys. Chem. C 2019, 123, 18087–18094. [Google Scholar] [CrossRef]
- Dong, A.; Ye, X.; Chen, J.; Kang, Y.; Gordon, T.; Kikkawa, J.M.; Murray, C.B. A Generalized Ligand-Exchange Strategy Enabling Sequential Surface Functionalization of Colloidal Nanocrystals. J. Am. Chem. Soc. 2011, 133, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Rosen, E.L.; Buonsanti, R.; Llordes, A.; Sawvel, A.M.; Milliron, D.J.; Helms, B.A. Exceptionally Mild Reactive Stripping of Native Ligands from Nanocrystal Surfaces by Using Meerwein’s Salt. Angew. Chem. Int. Ed. 2012, 51, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.G.; Deshmukh, S.D.; Turnley, J.W.; Sutandar, D.S.; Fields, J.P.; Agrawal, R. Direct Synthesis of Sulfide-Capped Nanoparticles for Carbon-Free Solution-Processed Photovoltaics. ACS Appl. Nano Mater. 2021, 4, 11466–11472. [Google Scholar] [CrossRef]
- Jamal, F.; Rafique, A.; Moeen, S.; Haider, J.; Nabgan, W.; Haider, A.; Imran, M.; Nazir, G.; Alhassan, M.; Ikram, M.; et al. Review of Metal Sulfide Nanostructures and Their Applications. ACS Appl. Nano Mater. 2023, 6, 7077–7106. [Google Scholar] [CrossRef]
- Kadlag, K.P.; Rao, M.J.; Nag, A. Ligand-Free, Colloidal, and Luminescent Metal Sulfide Nanocrystals. J. Phys. Chem. Lett. 2013, 4, 1676–1681. [Google Scholar] [CrossRef]
- Zi, Y.; Zhu, J.; Wang, M.; Hu, L.; Hu, Y.; Wageh, S.; Al-Hartomy, O.A.; Al-Ghamdi, A.; Huang, W.; Zhang, H. CdS@CdSe Core/Shell Quantum Dots for Highly Improved Self-Powered Photodetection Performance. Inorg. Chem. 2021, 60, 18608–18613. [Google Scholar] [CrossRef]
- Nag, A.; Chung, D.S.; Dolzhnikov, D.S.; Dimitrijevic, N.M.; Chattopadhyay, S.; Shibata, T.; Talapin, D.V. Effect of Metal Ions on Photoluminescence, Charge Transport, Magnetic and Catalytic Properties of All-Inorganic Colloidal Nanocrystals and Nanocrystal Solids. J. Am. Chem. Soc. 2012, 134, 13604–13615. [Google Scholar] [CrossRef]
- Al-Allak, H.M.; Brinkman, A.W.; Richter, H.; Bonnet, D. Dependence of CdSCdTe Thin Film Solar Cell Characteristics on the Processing Conditions. J. Cryst. Growth 1996, 159, 910–915. [Google Scholar] [CrossRef]
- Zhang, H.; Jang, J.; Liu, W.; Talapin, D.V. Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands. ACS Nano 2014, 8, 7359–7369. [Google Scholar] [CrossRef]
- Llordés, A.; Wang, Y.; Fernandez-Martinez, A.; Xiao, P.; Lee, T.; Poulain, A.; Zandi, O.; Saez Cabezas, C.A.; Henkelman, G.; Milliron, D.J. Linear Topology in Amorphous Metal Oxide Electrochromic Networks Obtained via Low-Temperature Solution Processing. Nat. Mater. 2016, 15, 1267–1273. [Google Scholar] [CrossRef]
- Llordes, A.; Hammack, A.T.; Buonsanti, R.; Tangirala, R.; Aloni, S.; Helms, B.A.; Milliron, D.J. Polyoxometalates and Colloidal Nanocrystals as Building Blocks for Metal Oxide Nanocomposite Films. J. Mater. Chem. 2011, 21, 11631–11638. [Google Scholar] [CrossRef]
- Grubbs, R.B. Roles of Polymer Ligands in Nanoparticle Stabilization. Polym. Rev. 2007, 47, 197–215. [Google Scholar] [CrossRef]
- Piao, Y.; Jang, Y.; Shokouhimehr, M.; Lee, I.S.; Hyeon, T. Facile Aqueous-Phase Synthesis of Uniform Palladium Nanoparticles of Various Shapes and Sizes. Small 2007, 3, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Tiryaki, E.; Zorlu, T.; Alvarez-Puebla, R.A. Magnetic–Plasmonic Nanocomposites as Versatile Substrates for Surface–Enhanced Raman Scattering (SERS) Spectroscopy. Chem. A Eur. J. 2024, 30, e202303987. [Google Scholar] [CrossRef]
- de la Encarnación, C.; Jimenez de Aberasturi, D.; Liz-Marzán, L.M. Multifunctional Plasmonic-Magnetic Nanoparticles for Bioimaging and Hyperthermia. Adv. Drug Deliv. Rev. 2022, 189, 114484. [Google Scholar] [CrossRef]
- Canet-Ferrer, J.; Albella, P.; Ribera, A.; Usagre, J.V.; Maier, S.A. Hybrid Magnetite–Gold Nanoparticles as Bifunctional Magnetic–Plasmonic Systems: Three Representative Cases. Nanoscale Horiz. 2017, 2, 205–216. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, S.; Wu, W. Shape Control of Inorganic Nanoparticles from Solution. Nanoscale 2016, 8, 1237–1259. [Google Scholar] [CrossRef]
- Wokosin, K.A.; Schell, E.L.; Faust, J.A. Emerging Investigator Series: Surfactants, Films, and Coatings on Atmospheric Aerosol Particles: A Review. Environ. Sci. Atmos. 2022, 2, 775–828. [Google Scholar] [CrossRef]
- De Roo, J.; Zhou, Z.; Wang, J.; Deblock, L.; Crosby, A.J.; Owen, J.S.; Nonnenmann, S.S. Synthesis of Phosphonic Acid Ligands for Nanocrystal Surface Functionalization and Solution Processed Memristors. Chem. Mater. 2018, 30, 8034–8039. [Google Scholar] [CrossRef]
- Wills, A.W.; Kang, M.S.; Khare, A.; Gladfelter, W.L.; Norris, D.J. Thermally Degradable Ligands for Nanocrystals. ACS Nano 2010, 4, 4523–4530. [Google Scholar] [CrossRef]
- Sun, Y.; Donaldson, P.D.; Garcia-Barriocanal, J.; Swisher, S.L. Understanding Quantum Confinement and Ligand Removal in Solution-Based ZnO Thin Films from Highly Stable Nanocrystal Ink. J. Mater. Chem. C 2018, 6, 9181–9190. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, B.; Sun, L.; Hovden, R.; Wise, F.W.; Muller, D.A.; Robinson, R.D. Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots. Nano Lett. 2011, 11, 5356–5361. [Google Scholar] [CrossRef] [PubMed]
- Papagiorgis, P.; Sergides, M.; Manoli, A.; Athanasiou, M.; Bernasconi, C.; Galatopoulos, F.; Ioakeimidis, A.; Nicolaides, C.; Leontidis, E.; Trypiniotis, T.; et al. The Impact of Ligand Removal on the Optoelectronic Properties of Inorganic and Hybrid Lead Halide Perovskite Nanocrystal Films. Adv. Opt. Mater. 2024, 12, 2301501. [Google Scholar] [CrossRef]
- Shaw, S.; Silva, T.F.; Mohapatra, P.; Mendivelso-Perez, D.; Tian, X.; Naab, F.; Rodrigues, C.L.; Smith, E.A.; Cademartiri, L. On the Kinetics of the Removal of Ligands from Films of Colloidal Nanocrystals by Plasmas. Phys. Chem. Chem. Phys. 2019, 21, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- Kramer, T.J.; Kumar, S.K.; Steigerwald, M.L.; Herman, I.P. Reducing Strain and Fracture of Electrophoretically Deposited CdSe Nanocrystal Films. I. Postdeposition Infusion of Capping Ligands. J. Phys. Chem. B 2013, 117, 1537–1543. [Google Scholar] [CrossRef]
- Wang, Y.; Kanjanaboos, P.; Barry, E.; McBride, S.; Lin, X.M.; Jaeger, H.M. Fracture and Failure of Nanoparticle Monolayers and Multilayers. Nano Lett. 2014, 14, 826–830. [Google Scholar] [CrossRef]
- Savagatrup, S.; Printz, A.D.; O’Connor, T.F.; Zaretski, A.V.; Rodriquez, D.; Sawyer, E.J.; Rajan, K.M.; Acosta, R.I.; Root, S.E.; Lipomi, D.J. Mechanical Degradation and Stability of Organic Solar Cells: Molecular and Microstructural Determinants. Energy Environ. Sci. 2014, 8, 55–80. [Google Scholar] [CrossRef]
- Thomas, R.T.; Nair, V.; Sandhyarani, N. TiO2 Nanoparticle Assisted Solid Phase Photocatalytic Degradation of Polythene Film: A Mechanistic Investigation. Colloids Surf. A 2013, 422, 1–9. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, J.; Fang, Z.; Ning, H.; Chen, J.; Yang, C.; Zhou, Y.; Yao, R.; Song, Y.; Peng, J. Evaporation Induced Hollow Cracks and the Adhesion of Silver Nanoparticle Film. J. Mater. Sci. 2019, 54, 7987–7996. [Google Scholar] [CrossRef]
- Hosni, M.; Kusumawati, Y.; Farhat, S.; Jouini, N.; Pauporté, T. Effects of Oxide Nanoparticle Size and Shape on Electronic Structure, Charge Transport, and Recombination in Dye-Sensitized Solar Cell Photoelectrodes. J. Phys. Chem. C 2014, 118, 16791–16798. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, S.; Song, H. Photon Management to Reduce Energy Loss in Perovskite Solar Cells. Chem. Soc. Rev. 2021, 50, 7250–7329. [Google Scholar] [PubMed]
- Deepak, T.G.; Anjusree, G.S.; Thomas, S.; Arun, T.A.; Nair, S.V.; Sreekumaran Nair, A. A Review on Materials for Light Scattering in Dye-Sensitized Solar Cells. RSC Adv. 2014, 4, 17615–17638. [Google Scholar] [CrossRef]
- Sui, W.; Zhang, C.; Xu, H.Y.; Li, J.C. Mechanical Strain Effects on Resistive Switching of Flexible Polymer Thin Films Embedded with ZnO Nanoparticles. Mater. Res. Express 2018, 5, 066425. [Google Scholar] [CrossRef]
- Lee, Y.I.; Kim, S.; Jung, S.B.; Myung, N.V.; Choa, Y.H. Enhanced Electrical and Mechanical Properties of Silver Nanoplatelet-Based Conductive Features Direct Printed on a Flexible Substrate. ACS Appl. Mater. Interfaces 2013, 5, 5908–5913. [Google Scholar] [CrossRef]
- Sean Hinds, B.; Levina, L.; Klem, E.J.D.; Konstantatos, G.; Sukhovatkin, V.; Sargent, E.H.; Sargent, E.H.; Hinds, S.; Levina, L.; Klem, E.J.D.; et al. Smooth-Morphology Ultrasensitive Solution-Processed Photodetectors. Adv. Mater. 2008, 20, 4398–4402. [Google Scholar] [CrossRef]
- Addonizio, M.L.; Aronne, A.; Imparato, C. Amorphous Hybrid TiO2 Thin Films: The Role of Organic Ligands and UV Irradiation. Appl. Surf. Sci. 2020, 502, 144095. [Google Scholar] [CrossRef]
- Ocier, C.R.; Whitham, K.; Hanrath, T.; Robinson, R.D. Chalcogenidometallate Clusters as Surface Ligands for Pbse Nanocrystal Field-Effect Transistors. J. Phys. Chem. C 2014, 118, 3377–3385. [Google Scholar] [CrossRef]
- Arora, H.; Li, Z.; Sai, H.; Kamperman, M.; Warren, S.C.; Wiesner, U. Block Copolymer Directed Nanoporous Metal Thin Films. Macromol. Rapid Commun. 2010, 31, 1960–1964. [Google Scholar] [CrossRef]
- Maho, A.; Saez Cabezas, C.A.; Meyertons, K.A.; Reimnitz, L.C.; Sahu, S.; Helms, B.A.; Milliron, D.J. Aqueous Processing and Spray Deposition of Polymer-Wrapped Tin-Doped Indium Oxide Nanocrystals as Electrochromic Thin Films. Chem. Mater. 2020, 32, 8401–8411. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Kim, B.H. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. Nanomaterials 2024, 14, 1685. https://doi.org/10.3390/nano14201685
Choi J, Kim BH. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. Nanomaterials. 2024; 14(20):1685. https://doi.org/10.3390/nano14201685
Chicago/Turabian StyleChoi, Jungwook, and Byung Hyo Kim. 2024. "Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films" Nanomaterials 14, no. 20: 1685. https://doi.org/10.3390/nano14201685
APA StyleChoi, J., & Kim, B. H. (2024). Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. Nanomaterials, 14(20), 1685. https://doi.org/10.3390/nano14201685