Water Sorption on Isoreticular CPO-27-Type MOFs: From Discrete Sorption Sites to Water-Bridge-Mediated Pore Condensation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Linker and MOF Synthesis
2.2. Preparation of Hydrated Samples
2.3. General Characterization Techniques
2.4. Fourier Transform Infrared (FTIR) Spectroscopy
2.5. Sorption Analysis
2.5.1. Nitrogen Physisorption Measurements
2.5.2. Water Vapor Sorption Measurements
3. Results and Discussion
3.1. General Characterization
3.2. Thermal Analysis
3.3. FTIR Spectra of Hydrated Samples
3.4. Water Vapor Sorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Janiak, C.; Vieth, J.K. MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366. [Google Scholar] [CrossRef]
- Schoedel, A.; Li, M.; Li, D.; O’Keeffe, M.; Yaghi, O.M. Structures of Metal–Organic Frameworks with Rod Secondary Building. Units. Chem. Rev. 2016, 116, 12466–12535. [Google Scholar] [CrossRef]
- Keeffe, M.O.; Peskov, M.A.; Ramsden, S.J.; Yaghi, O.M. The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets. Acc. Chem. Res. 2008, 41, 1782–1789. [Google Scholar] [CrossRef]
- Zhao, D.; Timmons, D.J.; Yuan, D.; Zhou, H.-C. Tuning the Topology and Functionality of Metal−Organic Frameworks by Ligand Design. Acc. Chem. Res. 2011, 44, 123–133. [Google Scholar] [CrossRef]
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef]
- Pallach, R.; Keupp, J.; Terlinden, K.; Frentzel-Beyme, L.; Kloß, M.; Machalica, A.; Kotschy, J.; Vasa, S.K.; Chater, P.A.; Sternemann, C.; et al. Frustrated flexibility in metal-organic frameworks. Nat. Commun. 2021, 12, 4097. [Google Scholar] [CrossRef]
- Frentzel-Beyme, L.; Kloß, M.; Kolodzeiski, P.; Pallach, R.; Henke, S. Meltable Mixed-Linker Zeolitic Imidazolate Frameworks and Their Microporous Glasses: From Melting Point Engineering to Selective Hydrocarbon Sorption. J. Am. Chem. Soc. 2019, 141, 12362–12371. [Google Scholar] [CrossRef]
- Henke, S.; Schneemann, A.; Wütscher, A.; Fischer, R.A. Directing the Breathing Behavior of Pillared-Layered Metal–Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents. J. Am. Chem. Soc. 2012, 134, 9464–9474. [Google Scholar] [CrossRef]
- Lu, F.-F.; Gu, X.-W.; Wu, E.; Li, B.; Qian, G. Systematic evaluation of water adsorption in isoreticular UiO-type metal–organic frameworks. J. Mater. Chem. A 2023, 11, 1246–1255. [Google Scholar] [CrossRef]
- Deng, H.; Grunder, S.; Cordova, K.E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A.C.; Liu, Z.; Asahina, S.; et al. Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science 2012, 336, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Kalmutzki, M.J.; Diercks, C.S.; Yaghi, O.M. Metal–Organic Frameworks for Water Harvesting from Air. Adv. Mater. 2018, 30, 1704304. [Google Scholar] [CrossRef]
- Akiyama, G.; Matsuda, R.; Sato, H.; Hori, A.; Takata, M.; Kitagawa, S. Effect of functional groups in MIL-101 on water sorption behavior. Microporous Mesoporous Mater. 2012, 157, 89–93. [Google Scholar] [CrossRef]
- Frentzel-Beyme, L.; Kloß, M.; Pallach, R.; Salamon, S.; Moldenhauer, H.; Landers, J.; Wende, H.; Debus, J.; Henke, S. Porous purple glass—A cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework. J. Mater. Chem. A 2019, 7, 985–990. [Google Scholar] [CrossRef]
- Dietzel, P.D.C.; Morita, Y.; Blom, R.; Fjellvåg, H. An In Situ High-Temperature Single-Crystal Investigation of a Dehydrated Metal–Organic Framework Compound and Field-Induced Magnetization of One-Dimensional Metal–Oxygen Chains. Angew. Chem. Int. Ed. 2005, 44, 6354–6358. [Google Scholar] [CrossRef]
- Rosi, N.L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O.M. Rod Packings and Metal−Organic Frameworks Constructed from Rod-Shaped Secondary Building Units. J. Am. Chem. Soc. 2005, 127, 1504–1508. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Vemuri, R.S.; Estevez, L.; Koech, P.K.; Varga, T.; Camaioni, D.M.; Blake, T.A.; Mcgrail, B.P.; Motkuri, R.K. Pore-Engineered Metal–Organic Frameworks with Excellent Adsorption of Water and Fluorocarbon Refrigerant for Cooling Applications. J. Am. Chem. Soc. 2017, 139, 10601–10604. [Google Scholar] [CrossRef]
- Gheorghe, A.; Reus, S.; Koenis, M.; Dubbeldam, D.; Woutersen, S.; Tanase, S. Role of additives and solvents in the synthesis of chiral isoreticular MOF-74 topologies. Dalt. Trans. 2021, 50, 12159–12167. [Google Scholar] [CrossRef]
- Peng, S.; Bie, B.; Jia, H.; Tang, H.; Zhang, X.; Sun, Y.; Wei, Q.; Wu, F.; Yuan, Y.; Deng, H.; et al. Efficient Separation of Nucleic Acids with Different Secondary Structures by Metal–Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 5049–5059. [Google Scholar] [CrossRef]
- Dietzel, P.D.C.; Georgiev, P.A.; Frøseth, M.; Johnsen, R.E.; Fjellvåg, H.; Blom, R. Effect of Larger Pore Size on the Sorption Properties of Isoreticular Metal–Organic Frameworks with High Number of Open Metal Sites. Chem. A Eur. J. 2020, 26, 13523–13531. [Google Scholar] [CrossRef]
- Zheng, J.; Barpaga, D.; Trump, B.A.; Shetty, M.; Fan, Y.; Bhattacharya, P.; Jenks, J.J.; Su, C.Y.; Brown, C.M.; Maurin, G.; et al. Molecular Insight into Fluorocarbon Adsorption in Pore Expanded Metal–Organic Framework Analogs. J. Am. Chem. Soc. 2020, 142, 3002–3012. [Google Scholar] [CrossRef]
- Kapelewski, M.T.; Geier, S.J.; Hudson, M.R.; Stück, D.; Mason, J.A.; Nelson, J.N.; Xiao, D.J.; Hulvey, Z.; Gilmour, E.; Fitzgerald, S.A.; et al. M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni) Metal–Organic Frameworks Exhibiting Increased Charge Density and Enhanced H2 Binding at the Open Metal Sites. J. Am. Chem. Soc. 2014, 136, 12119–12129. [Google Scholar] [CrossRef] [PubMed]
- Gygi, D.; Bloch, E.D.; Mason, J.A.; Hudson, M.R.; Gonzalez, M.I.; Siegelman, R.L.; Darwish, T.A.; Queen, W.L.; Brown, C.M.; Long, J.R. Hydrogen Storage in the Expanded Pore Metal–Organic Frameworks M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Mater. 2016, 28, 1128–1138. [Google Scholar] [CrossRef]
- Forse, A.C.; Gonzalez, M.I.; Siegelman, R.L.; Witherspoon, V.J.; Jawahery, S.; Mercado, R.; Milner, P.J.; Martell, J.D.; Smit, B.; Blümich, B.; et al. Unexpected Diffusion Anisotropy of Carbon Dioxide in the Metal–Organic Framework Zn2(dobpdc). J. Am. Chem. Soc. 2018, 140, 1663–1673. [Google Scholar] [CrossRef]
- Kökçam-Demir, Ü.; Goldman, A.; Esrafili, L.; Gharib, M.; Morsali, A.; Weingart, O.; Janiak, C. Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: Design and applications. Chem. Soc. Rev. 2020, 49, 2751. [Google Scholar] [CrossRef]
- Dietzel, P.D.C.; Besikiotis, V.; Blom, R. Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. J. Mater. Chem. 2009, 19, 7362–7370. [Google Scholar] [CrossRef]
- Pato-Doldán, B.; Rosnes, M.H.; Dietzel, P.D.C. An In-Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal–Organic Frameworks CPO-27-M. ChemSusChem 2017, 10, 1710–1719. [Google Scholar] [CrossRef] [PubMed]
- Fetisov, E.O.; Shah, M.S.; Long, J.R.; Tsapatsis, M.; Siepmann, J.I. First principles Monte Carlo simulations of unary and binary adsorption: CO2, N2, and H2O in Mg-MOF-74. Chem. Commun. 2018, 54, 10816–10819. [Google Scholar] [CrossRef]
- Queen, W.L.; Hudson, M.R.; Bloch, E.D.; Mason, J.A.; Gonzalez, M.I.; Lee, J.S.; Gygi, D.; Howe, J.D.; Lee, K.; Darwish, T.A.; et al. Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). Chem. Sci. 2014, 5, 4569–4581. [Google Scholar] [CrossRef]
- Drisdell, W.S.; Poloni, R.; McDonald, T.M.; Long, J.R.; Smit, B.; Neaton, J.B.; Prendergast, D.; Kortright, J.B. Probing Adsorption Interactions in Metal–Organic Frameworks using X-ray Spectroscopy. J. Am. Chem. Soc. 2013, 135, 18183–18190. [Google Scholar] [CrossRef]
- Strauss, I.; Mundstock, A.; Hinrichs, D.; Himstedt, R.; Knebel, A.; Reinhardt, C.; Dorfs, D.; Caro, J. The Interaction of Guest Molecules with Co-MOF-74: A Vis/NIR and Raman Approach. Angew. Chemie Int. Ed. 2018, 57, 7434–7439. [Google Scholar] [CrossRef] [PubMed]
- Rosnes, M.H.; Pato-Doldán, B.; Johnsen, R.E.; Mundstock, A.; Caro, J.; Dietzel, P.D.C. Role of the metal cation in the dehydration of the microporous metal–organic frameworks CPO-27-M. Microporous Mesoporous Mater. 2020, 309, 110503. [Google Scholar] [CrossRef]
- Chen, T.; Chen, S.; Chen, Y.; Zhao, M.; Losic, D.; Zhang, S. Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond. Mater. Chem. Front. 2021, 5, 1771–1794. [Google Scholar] [CrossRef]
- McDonald, T.M.; Lee, W.R.; Mason, J.A.; Wiers, B.M.; Hong, C.S.; Long, J.R. Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–Organic Framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 2012, 134, 7056–7065. [Google Scholar] [CrossRef] [PubMed]
- Trickett, C.A.; Helal, A.; Al-Maythalony, B.A.; Yamani, Z.H.; Cordova, K.E.; Yaghi, O.M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045. [Google Scholar] [CrossRef]
- Solís, C.; Palaci, D.; Llabres i Xamena, F.X.; Serra, J.M. Proton Transport through Robust CPO-27-type Metal Organic Frameworks. J. Phys. Chem. C 2014, 118, 21663–21670. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, E.J.; Song, D.; Jeong, N.C. High Proton Mobility with High Directionality in Isolated Channels of MOF-74. ACS Appl. Mater. Interfaces 2018, 10, 35354–35360. [Google Scholar] [CrossRef]
- Javed, A.; Strauss, I.; Bunzen, H.; Caro, J.; Tiemann, M. Humidity-Mediated Anisotropic Proton Conductivity through the 1D Channels of Co-MOF-74. Nanomaterials 2020, 10, 1263. [Google Scholar] [CrossRef]
- Khalil, I.E.; Fonseca, J.; Reithofer, M.R.; Eder, T.; Chin, J.M. Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coord. Chem. Rev. 2023, 481, 215043. [Google Scholar] [CrossRef]
- Liu, Y.R.; Chen, Y.Y.; Zhao, H.Y.; Li, G. Exploration of single-crystal proton conduction in ordered networks. Coord. Chem. Rev. 2024, 499, 215516. [Google Scholar] [CrossRef]
- Hanikel, N.; Prévot, M.S.; Yaghi, O.M. MOF water harvesters. Nat. Nanotechnol. 2020, 15, 348. [Google Scholar] [CrossRef] [PubMed]
- DeCoste, J.B.; Peterson, G.W.; Schindler, B.J.; Killops, K.L.; Browe, M.A.; Mahle, J.J. The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. J. Mater. Chem. A 2013, 1, 11922–11932. [Google Scholar] [CrossRef]
- Schoenecker, P.M.; Carson, C.G.; Jasuja, H.; Flemming, C.J.J.; Walton, K.S. Effect of Water Adsorption on Retention of Structure and Surface Area of Metal–Organic Frameworks. Ind. Eng. Chem. Res. 2012, 51, 6513–6519. [Google Scholar] [CrossRef]
- Metrane, A.; Delhali, A.; Ouikhalfan, M.; Assen, A.H.; Belmabkhout, Y. Water Vapor Adsorption by Porous Materials: From Chemistry to Practical Applications. J. Chem. Eng. Data 2022, 67, 1617–1653. [Google Scholar] [CrossRef]
- Weinberger, C.; Zysk, F.; Hartmann, M.; Kaliannan, N.K.; Keil, W.; Kühne, T.D.; Tiemann, M. The Structure of Water in Silica Mesopores—Influence of the Pore Wall Polarity. Adv. Mater. Interfaces 2022, 9, 2200245. [Google Scholar] [CrossRef]
- Kloß, M.; Beerbaum, M.; Baier, D.; Weinberger, C.; Zysk, F.; Elgabarty, H.; Kühne, T.D.; Tiemann, M. Understanding Hydration in CPO-27 Metal-Organic Frameworks: Strong Impact of the Chemical Nature of the Metal (Cu, Zn). Adv. Mater. Interfaces 2024, 2400476. [Google Scholar] [CrossRef]
- Kloß, M.; Weinberger, C.; Tiemann, M. Water in the Micropores of CPO-27 Metal-Organic Frameworks: A Comprehensive Study. Microporous Mesoporous Mater. 2024, 381, 113352. [Google Scholar] [CrossRef]
- Furukawa, H.; Gándara, F.; Zhang, Y.B.; Jiang, J.; Queen, W.L.; Hudson, M.R.; Yaghi, O.M. Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136, 4369–4381. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, Z.; Wang, X.; Liu, X.; Kapteijn, F. Water Adsorption in MOFs: Structures and Applications. Adv. Funct. Mater. 2023, 34, 2304788. [Google Scholar] [CrossRef]
- Yaghi, O.M.; Kalmutzki, M.J.; Diercks, C.S. Water Sorption Applications of MOFs. In Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; Wiley-VCH: Weinheim, Germany, 2019; pp. 359–427. [Google Scholar] [CrossRef]
- Tan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y.J. Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration. Chem. Mater. 2012, 24, 3153–3167. [Google Scholar] [CrossRef]
- Tan, K.; Nijem, N.; Gao, Y.; Zuluaga, S.; Li, J.; Thonhauser, T.; Chabal, Y.J. Water interactions in metal organic frameworks. CrystEngComm 2015, 17, 247–260. [Google Scholar] [CrossRef]
- Lincoln, S.F. Mechanistic Studies of Metal Aqua Ions: A Semi-Historical Perspective. Helv. Chim. Acta 2005, 88, 523–545. [Google Scholar] [CrossRef]
- Ng, E.-P.; Mintova, S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater. 2008, 114, 1–26. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, W.; Tan, S.J.; Liu, M.; Do, D.D. Microscopic insights into water adsorption in carbon nanopores—The role of acidic and basic functional groups and their configurations. Phys. Chem. Chem. Phys. 2021, 23, 18369–18377. [Google Scholar] [CrossRef]
- Mileo, P.G.M.; Cho, K.H.; Park, J.; Devautour-Vinot, S.; Chang, J.S.; Maurin, G. Unraveling the Water Adsorption Mechanism in the Mesoporous MIL-100(Fe) Metal−Organic Framework. J. Phys. Chem. C 2019, 123, 23014–23025. [Google Scholar] [CrossRef]
- Ho, C.-H.; Valentine, M.L.; Chen, Z.; Xie, H.; Farha, O.; Xiong, W.; Paesani, F. Structure and thermodynamics of water adsorption in NU-1500-Cr. Commun. Chem. 2023, 6, 70. [Google Scholar] [CrossRef]
- Hanikel, N.; Pei, X.; Chheda, S.; Lyu, H.; Jeong, W.S.; Sauer, J.; Gagliardi, L.; Yaghi, O.M. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 2021, 374, 454–459. [Google Scholar] [CrossRef]
- Heidary, N.; Chartrand, D.; Guiet, A.; Kornienko, N. Rational incorporation of defects within metal–organic frameworks generates highly active electrocatalytic sites. Chem. Sci. 2021, 12, 7324–7333. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Li, Y.; Cao, Z.; Liu, H.; Tian, C.; Yang, Z.; Qiang, X.; Tan, Z.; Deng, Y. Discovery of novel 2,5-dihydroxyterephthalamide derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2018, 26, 6115–6127. [Google Scholar] [CrossRef]
- Schukraft, G.E.M.; Ayala, S.; Dick, B.L.; Cohen, S.M. Isoreticular expansion of polyMOFs achieves high surface area materials. Chem. Commun. 2017, 53, 10684–10687. [Google Scholar] [CrossRef]
- Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Is the bet equation applicable to microporous adsorbents? Stud. Surf. Sci. Catal. 2007, 160, 49–56. [Google Scholar] [CrossRef]
- Kim, H.; Sohail, M.; Yim, K.; Park, Y.C.; Chun, D.H.; Kim, H.J.; Han, S.O.; Moon, J.-H. Effective CO2 and CO Separation Using [M2(DOBDC)] (M = Mg, Co, Ni) with Unsaturated Metal Sites and Excavation of Their Adsorption Sites. ACS Appl. Mater. Interfaces 2019, 11, 7014–7021. [Google Scholar] [CrossRef] [PubMed]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure. Appl. Chem. 2015, 87, 1051. [Google Scholar] [CrossRef]
- Fu, Y.; Yao, Y.; Forse, A.C.; Li, J.; Mochizuki, K.; Long, J.R.; Reimer, J.A.; De Paëpe, G.; Kong, X. Solvent-derived defects suppress adsorption in MOF-74. Nat. Commun. 2023, 14, 2386. [Google Scholar] [CrossRef] [PubMed]
- Yasaka, Y.; Yoshida, K.; Wakai, C.; Matubayasi, N.; Nakahara, M. Kinetic and Equilibrium Study on Formic Acid Decomposition in Relation to the Water-Gas-Shift Reaction. J. Phys. Chem. A 2006, 110, 11082–11090. [Google Scholar] [CrossRef]
- Lim, J.; Lee, S.; Sharma, A.; Seong, J.; Baek, S.B.; Lah, M.S. Ligand functionalization of defect-engineered Ni-MOF-74. RSC Adv. 2022, 12, 31451–31455. [Google Scholar] [CrossRef]
- Onori, G.; Santucci, A. IR investigations of water structure in Aerosol OT reverse micellar aggregates. J. Phys. Chem. 1993, 97, 5430. [Google Scholar] [CrossRef]
- MacDonald, H.; Bedwell, B.; Gulari, E. FTIR spectroscopy of microemulsion structure. Langmuir 1986, 2, 704. [Google Scholar] [CrossRef]
- Knight, A.W.; Kalugin, N.G.; Coker, E.; Ilgen, A.G. Water properties under nano-scale confinement. Sci. Rep. 2019, 9, 8246. [Google Scholar] [CrossRef]
- Wagner, J.C.; Hunter, K.M.; Paesani, F.; Xiong, W. Water Capture Mechanisms at Zeolitic Imidazolate Framework Interfaces. J. Am. Chem. Soc. 2021, 143, 21189–21194. [Google Scholar] [CrossRef]
- Brubach, J.-B.; Mermet, A.; Filabozzi, A.; Gerschel, A.; Roy, P. Signatures of the hydrogen bonding in the infrared bands of water. J. Chem. Phys. 2005, 122, 184509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Khaliullin, R.Z.; Bovi, D.; Guidoni, L.; Kühne, T.D. Vibrational Signature of Water Molecules in Asymmetric Hydrogen Bonding Environments. J. Phys. Chem. Lett. 2013, 4, 3245–3250. [Google Scholar] [CrossRef]
- Zhang, C.; Guidoni, L.; Kühne, T.D. Competing factors on the frequency separation between the OH stretching modes in water. J. Mol. Liq. 2015, 205, 42–45. [Google Scholar] [CrossRef]
- Iiyama, T.; Ruike, M.; Kaneko, K. Structural mechanism of water adsorption in hydrophobic micropores from in situ small angle X-ray scattering. Chem. Phys. Lett. 2000, 331, 359–364. [Google Scholar] [CrossRef]
- Alcañiz-Monge, J.; Linares-Solano, A.; Rand, B. Mechanism of Adsorption of Water in Carbon Micropores As Revealed by a Study of Activated Carbon Fibers. J. Phys. Chem. B 2002, 106, 3209–3216. [Google Scholar] [CrossRef]
- Brovchenko, I.; Geiger, A.; Oleinikova, A. Water in nanopores: II. The liquid–vapour phase transition near hydrophobic surfaces. J. Phys. Condens. Matter 2004, 16, S5345–S5370. [Google Scholar] [CrossRef]
- Ohba, T.; Kanoh, H.; Kaneko, K. Cluster-Growth-Induced Water Adsorption in Hydrophobic Carbon Nanopores. J. Phys. Chem. B 2004, 108, 14964–14969. [Google Scholar] [CrossRef]
- Ohba, T.; Kanoh, H.; Kaneko, K. Structures and Stability of Water Nanoclusters in Hydrophobic Nanospaces. Nano Lett. 2005, 5, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Gallo, P.; Rovere, M.; Chen, S.-H. Anomalous dynamics of water confined in MCM-41 at different hydrations. J. Phys. Condens. Matter 2010, 22, 284102. [Google Scholar] [CrossRef]
- Sadeghi, M.; Parsafar, G.A. Density-induced molecular arrangements of water inside carbon nanotubes. Phys. Chem. Chem. Phys. 2013, 15, 7379–7388. [Google Scholar] [CrossRef]
- Thommes, M.; Morell, J.; Cychosz, K.A.; Fröba, M. Combining Nitrogen, Argon, and Water Adsorption for Advanced Characterization of Ordered Mesoporous Carbons (CMKs) and Periodic Mesoporous Organosilicas (PMOs). Langmuir 2013, 29, 14893–14902. [Google Scholar] [CrossRef] [PubMed]
- Mietner, J.B.; Brieler, F.J.; Lee, Y.J.; Fröba, M. Properties of Water Confined in Periodic Mesoporous Organosilicas: Nanoimprinting the Local Structure. Angew. Chem. Int. Ed. 2017, 56, 12348–12351. [Google Scholar] [CrossRef] [PubMed]
- Malfait, B.; Moréac, A.; Jani, A.; Lefort, R.; Huber, P.; Fröba, M.; Morineau, D. Structure of Water at Hydrophilic and Hydrophobic Interfaces: Raman Spectroscopy of Water Confined in Periodic Mesoporous (Organo)Silicas. J. Phys. Chem. C 2022, 126, 3520–3531. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Benin, A.I.; Jakubczak, P.; Willis, R.R.; LeVan, M.D. CO2/H2O Adsorption Equilibrium and Rates on Metal−Organic Frameworks: HKUST-1 and Ni/DOBDC. Langmuir 2010, 26, 14301–14307. [Google Scholar] [CrossRef]
- Villajos, J.A.; Jagorel, N.; Reinsch, S.; Emmerling, F. Increasing Exposed Metal Site Accessibility in a Co-MOF-74 Material with Induced Structure-Defects. Front. Mater. 2019, 6, 230. [Google Scholar] [CrossRef]
- Dalla Bernardina, S.; Paineau, E.; Brubach, J.-B.; Judeinstein, P.; Rouzière, S.; Launois, P.; Roy, P. Water in Carbon Nanotubes: The Peculiar Hydrogen Bond Network Revealed by Infrared Spectroscopy. J. Am. Chem. Soc. 2016, 138, 10437–10443. [Google Scholar] [CrossRef] [PubMed]
- Hanasaki, I.; Nakatani, A. Hydrogen bond dynamics and microscopic structure of confined water inside carbon nanotubes. J. Chem. Phys. 2006, 124, 144708. [Google Scholar] [CrossRef]
- Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 2009, 120, 325–330. [Google Scholar] [CrossRef]
- Moon, H.; Collanton, R.P.; Monroe, J.I.; Casey, T.M.; Shell, M.S.; Han, S.; Scott, S.L. Evidence for Entropically Controlled Interfacial Hydration in Mesoporous. Organosilicas. J. Am. Chem. Soc. 2022, 144, 1766–1777. [Google Scholar] [CrossRef]
- Wang, C.; Xing, Y.; Lei, Y.; Xia, Y.; Zhang, C.; Zhang, R.; Wang, S.; Chen, P.; Zhu, S.; Li, J.; et al. Adsorption of water on carbon materials: The formation of “water bridge” and its effect on water adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127719. [Google Scholar] [CrossRef]
- Harris, M.F.; Logan, J.L. Determination of log Kow Values for Four Drugs. J. Chem. Educ. 2014, 91, 915–918. [Google Scholar] [CrossRef]
- Paschke, A.; Neitzel, P.L.; Walther, W.; Schüürmann, G. Octanol/Water Partition Coefficient of Selected Herbicides: Determination Using Shake-Flask Method and Reversed-Phase High-Performance Liquid Chromatography. J. Chem. Eng. Data 2004, 49, 1639–1642. [Google Scholar] [CrossRef]
- Lum, K.; Chandler, D.; Weeks, J.D. Hydrophobicity at Small and Large Length Scales. J. Phys. Chem. B 1999, 103, 4570–4577. [Google Scholar] [CrossRef]
- Huang, D.M.; Chandler, D. Temperature and length scale dependence of hydrophobic effects and their possible implications for protein folding. Proc. Natl. Acad. Sci. USA 2000, 97, 8324–8327. [Google Scholar] [CrossRef]
- Huang, D.M.; Geissler, P.L.; Chandler, D. Scaling of Hydrophobic Solvation Free Energies. J. Phys. Chem. B 2001, 105, 6704–6709. [Google Scholar] [CrossRef]
- Wong-Ng, W.; Kaduk, J.A.; Wu, H.; Suchomel, M. Synchrotron X-ray studies of metal-organic framework M2(2,5-dihydroxyterephthalate), M = (Mn, Co, Ni, Zn) (MOF74). Powder Diffr. 2012, 27, 256–262. [Google Scholar] [CrossRef]
d110 (Å) | SBET (m2 g−1) | VPore (cm3 g−1) | dPore,NLDFT (Å) | |
---|---|---|---|---|
Ni2dhtp | 12.93 ± 0.02 | 1240 ± 80 | 0.55 ± 0.07 | 12.73 ± 0.22 |
Ni2dhip | 12.97 ± 0.06 | 560 ± 120 | 0.38 ± 0.09 | 11.93 ± 0.30 |
Ni2dondc | 14.57 ± 0.10 | 1010 ± 10 | 0.55 ± 0.03 | 13.63 ± 0.42 |
Ni2bpp | 18.36 ± 0.04 | 1660 ± 230 | 0.74 ± 0.02 | 16.68 ± 0.57 |
Ni2bpm | 18.87 ± 0.00 | 1200 ± 50 | 0.58 ± 0.02 | 18.52 ± 0.52 |
Ni2tpp | 23.05 ± 0.06 | 2320 ± 140 | 1.03 ± 0.06 | 25.09 ± 0.67 |
Linker Molecules per Formula Unit | For−/OAc− Ligands per Formula Unit | Sum Formula | |
---|---|---|---|
Ni2dhtp | 0.84 ± 0.02 | 0.62 ± 0.10 | Ni2(dhtp)0.84(For)0.62 |
Ni2dhip | 0.65 ± 0.09 | 1.41 ± 0.35 | Ni2(dhip)0.65(For)1.41 |
Ni2dondc | 0.65 ± 0.01 | 1.39 ± 0.00 | Ni2(dondc)0.65(OAc)1.39 |
Ni2bpp | 0.49 ± 0.06 | 2.04 ± 0.25 | Ni2(bpp)0.49(For)2.04 |
Ni2bpm | 0.61 ± 0.06 | 1.54 ± 0.25 | Ni2(bpm)0.61(For)1.54 |
Ni2tpp | 0.54 ± 0.04 | 1.85 ± 0.16 | Ni2(tpp)0.54(For)1.85 |
Δmultimer-network (cm−1) | Δmultimer-intermed. (cm−1) | Δnetwork-intermed. (cm−1) | |
---|---|---|---|
Ni2dhtp | 336.2 ± 2.5 | 146.1 ± 1.1 | 190.1 ± 2.5 |
Ni2dhip | 325.4 ± 1.8 | 142.2 ± 1.2 | 183.2 ± 1.8 |
Ni2dondc | 337.0 ± 2.5 | 141.3 ± 1.2 | 181.7 ± 1.7 |
Ni2bpp | 321.0 ± 1.9 | 140.9 ± 1.5 | 182.9 ± 1.6 |
Ni2bpm | 320.6 ± 1.7 | 142.6 ± 1.4 | 178.8 ± 1.5 |
Ni2tpp | 309.1 ± 2.2 | 140.0 ± 2.0 | 169.1 ± 1.8 |
water | 284.4 ± 1.5 | 130.2 ± 2.9 | 154.2 ± 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kloß, M.; Schäfers, L.; Zhao, Z.; Weinberger, C.; Egold, H.; Tiemann, M. Water Sorption on Isoreticular CPO-27-Type MOFs: From Discrete Sorption Sites to Water-Bridge-Mediated Pore Condensation. Nanomaterials 2024, 14, 1791. https://doi.org/10.3390/nano14221791
Kloß M, Schäfers L, Zhao Z, Weinberger C, Egold H, Tiemann M. Water Sorption on Isoreticular CPO-27-Type MOFs: From Discrete Sorption Sites to Water-Bridge-Mediated Pore Condensation. Nanomaterials. 2024; 14(22):1791. https://doi.org/10.3390/nano14221791
Chicago/Turabian StyleKloß, Marvin, Lara Schäfers, Zhenyu Zhao, Christian Weinberger, Hans Egold, and Michael Tiemann. 2024. "Water Sorption on Isoreticular CPO-27-Type MOFs: From Discrete Sorption Sites to Water-Bridge-Mediated Pore Condensation" Nanomaterials 14, no. 22: 1791. https://doi.org/10.3390/nano14221791
APA StyleKloß, M., Schäfers, L., Zhao, Z., Weinberger, C., Egold, H., & Tiemann, M. (2024). Water Sorption on Isoreticular CPO-27-Type MOFs: From Discrete Sorption Sites to Water-Bridge-Mediated Pore Condensation. Nanomaterials, 14(22), 1791. https://doi.org/10.3390/nano14221791