Co-Activating Lattice Oxygen of TiO2-NT and SnO2 Nanoparticles on Superhydrophilic Graphite Felt for Boosting Electrocatalytic Oxidation of Glyphosate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of GF/PDA/TiO2-NT/SnO2/Ru Electrode
2.3. Analysis Methods
2.4. Electrochemical Oxidation Experiments
3. Results
3.1. Electrodes Characterization
3.2. Optimization of Glyphosate Degradation Conditions
3.3. Synergistic Degradation of Glyphosate
3.4. Proposed Mechanism for Glyphosate Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roshani, M.; Nematollahi, D.; Ansari, A.; Adib, K.; Masoudi-Khoram, M. Boosted electrocatalytic oxidation of organophosphorus pesticides by a novel high-efficiency CeO2-Doped PbO2 anode: An electrochemical study, parameter optimization and degradation mechanisms. Chemosphere 2024, 346, 140597. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, X.Y.; Lin, L. Fabrication of a SnO2-Sb nano-pin array anode for efficient electrocatalytic oxidation of bisphenol A in wastewater. J. Hazard. Mater. 2023, 444, 130444. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Tan, P.; Wang, R.; Li, S.; Liu, H.; Yang, Y.; Wu, Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. J. Hazard. Mater. 2022, 424, 127494. [Google Scholar] [CrossRef] [PubMed]
- Tran, M.H.; Nguyen, H.C.; Le, T.S.; Dang, V.A.D.; Cao, T.H.; Le, C.K.; Dang, T.D. Degradation of glyphosate herbicide by an electro-Fenton process using carbon felt cathode. Environ. Technol. 2021, 42, 1660411. [Google Scholar] [CrossRef]
- Tran, N.; Drogui, P.; Doan, T.L.; Le, T.S.; Nguyen, H.C. Electrochemical degradation and mineralization of glyphosate herbicide. Environ. Technol. 2017, 38, 1284268. [Google Scholar] [CrossRef]
- Alulema-Pullupaxi, P.; Fernandez, L.; Debut, A.; Santacruz, C.P.; Villacis, W.; Fierro, C.; Espinoza-Montero, P.J. Photoelectrocatalytic degradation of glyphosate on titanium dioxide synthesized by sol-gel/spin-coating on boron doped diamond (TiO2/BDD) as a photoanode. Chemosphere 2021, 278, 130488. [Google Scholar] [CrossRef]
- Lima, N.S.; Souza, É.M.; Torres, N.H.; Bergamasco., R.; Marques, M.N.; Garcia-Segura, S.; Sanchez de Alsina, O.L.; Cavalcanti, E.B. Relevance of adjuvants and additives of pesticide commercial formulation on the removal performance of glyphosate by electrochemically driven processes. J. Clean. 2019, 212, 837–846. [Google Scholar] [CrossRef]
- Bai, S.H.; Ogbourne, S.M. Glyphosate: Environmental contamination, toxicity and potential risks to human health via food contamination. Environ. Sci. Pollut. 2016, 23, 18988–19001. [Google Scholar] [CrossRef]
- Klátyik, S.; Simon, G.; Oláh, M.; Takács, E.; Mesnage, R.; Antoniou, M.N.; Zaller, J.G.; Székács, A. Aquatic ecotoxicity of glyphosate, its formulations, and co-formulants: Evidence from 2010 to 2023. Environ. Sci. Eur. 2024, 36, 00849-1. [Google Scholar] [CrossRef]
- Ganiyu, S.O.; Martínez-Huitle, C.A.; Oturan, M.A. Electrochemical advanced oxidation processes for wastewater treatment: Advances in formation and detection of reactive species and mechanisms. Curr. Opin. Electrochem. 2021, 27, 100678. [Google Scholar] [CrossRef]
- Brillas, E.; Sirés, I.; Oturan, M.A. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chem. Rev. 2009, 109, 6570–6631. [Google Scholar] [CrossRef] [PubMed]
- Yasmine, H.; Fourcade, F.; Zouaoui, F.; Biard, P.-F. Assessment of an hybrid process coupling ozonation and anodic oxidation in a monophasic configuration. Electrochim. Acta 2024, 484, 144049. [Google Scholar] [CrossRef]
- Thind, P.S.; Kumari, D.; John, S. TiO2/H2O2 mediated UV photocatalysis of Chlorpyrifos: Optimization of process parameters using response surface methodology. J. Environ. 2018, 6, 3602–3609. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y.; Yan, X.; Duan, J.; Saint, C.P.; Beecham, S. Transformation pathway and toxicity assessment of malathion in aqueous solution during UV photolysis and photocatalysis. Chemosphere 2019, 234, 204–214. [Google Scholar] [CrossRef]
- Chen, Y.; Tu, Y.; Bai, Y.; Li, J.; Lu, J. Electrosorption enhanced electrooxidation of a model organic pollutant at 3D SnO2-Sb electrode in superimposed pulse current mode. Chemosphere 2018, 195, 63–69. [Google Scholar] [CrossRef]
- Xu, L.; Tang, S.; Li, D.; Ma, X.; Zhu, Y.; Lu, J.; Niu, J. Electrochemical degradation of tris(2-chloroethyl) phosphate by metal-oxide-coated Ti anodes: Kinetics, toxicity and mechanism. Sep. Purif. Tech. 2021, 265, 118489. [Google Scholar] [CrossRef]
- Zhuo, Q.; Wang, J.; Niu, J.; Yang, B.; Yang, Y. Electrochemical oxidation of perfluorooctane sulfonate (PFOS) substitute by modified boron doped diamond (BDD) anodes. Chem. Eng. J. 2020, 379, 122280. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; Li, F.; Lu, L.; Li, W.; Feng, L.; Sun, L. Exploration of electrocatalytic water oxidation properties of NiFe catalysts doped with nonmetallic elements (P, S, Se). Int. J. Hydrog. Energy 2021, 46, 38992–39002. [Google Scholar] [CrossRef]
- Bibi, H.; Mansoor, M.A.; Asghar, M.A.; Ahmad, Z.; Numan, A.; Haider, A. Facile hydrothermal synthesis of highly durable binary and ternary cobalt nickel copper oxides for high-performance oxygen evolution reaction. Int. J. Hydrog. Energy, 2024; online ahead of print. [Google Scholar] [CrossRef]
- Ren, Y.; Zheng, W.; Duan, X.; Goswami, N.; Liu, Y. Recent advances in electrochemical removal and recovery of phosphorus from water: A review. Environ. Func. Mater. 2022, 1, 10–20. [Google Scholar] [CrossRef]
- Ning, Y.; Li, K.; Zhao, Z.; Chen, D.; Li, Y.; Liu, Y.; Yang, Q.; Jiang, B. Simultaneous electrochemical degradation of organophosphorus pesticides and recovery of phosphorus: Synergistic effect of anodic oxidation and cathodic precipitation. J. Taiwan Inst. Chem. Eng. 2021, 125, 267–275. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lim, S.K.; Park, H.; Hoffmann, M.R.; Kim, S. Trilayer CdS/carbon nanofiber (CNF) mat/Pt-TiO2 composite structures for solar hydrogen production: Effects of CNF mat thickness. Appl. Catal. B-Environ. 2016, 196, 216–222. [Google Scholar] [CrossRef]
- Satar, I.; Daud, W.R.W.; Kim, B.H.; Somalu, M.R.; Ghasemi, M.; Bakar, M.H.A.; Jafary, T.; Timmiati, S.N. Performance of titanium–nickel (Ti/Ni) and graphite felt-nickel (GF/Ni) electrodeposited by Ni as alternative cathodes for microbial fuel cells. J. Taiwan Inst. Chem. Eng. 2018, 89, 67–76. [Google Scholar] [CrossRef]
- Floner, D.; Geneste, F. Homogeneous coating of graphite felt by nickel electrodeposition to achieve light nickel felts with high surface area. Electrochem. Commun. 2007, 9, 2271–2275. [Google Scholar] [CrossRef]
- Chen, X.M.; Chen, G.H.; Gao, F.R.; Yue, P.L. High-performance Ti/BDD electrodes for pollutant oxidation. Environ. Sci. Technol. 2003, 37, 5021–5026. [Google Scholar] [CrossRef]
- Lee, W.J.; Wu, Y.T.; Liao, Y.W.; Liu, Y.T. Graphite Felt Modified by Atomic Layer Deposition with TiO2 Nanocoating Exhibits Super-Hydrophilicity, Low Charge-Transform Resistance, and High Electrochemical Activity. Nanomaterials 2020, 10, 1710. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, R. Impact of farm size on intensity of pesticide use: Evidence from China. Sci. Total Environ. 2021, 753, 141696. [Google Scholar] [CrossRef]
- Shao, C.; Yu, J.; Li, X.; Wang, X.; Zhu, K. Influence of the Pt nanoscale interlayer on stability and electrical property of Ti/Pt/Sb-SnO2 electrode: A synergetic experimental and computational study. J. Electroanal. Chem. 2017, 804, 140–147. [Google Scholar] [CrossRef]
- Krstić, V.; Pešovski, B. Reviews the research on some dimensionally stable anodes (DSA) based on titanium. Hydrometallurgy 2019, 185, 71–75. [Google Scholar] [CrossRef]
- Orha, C.; Bandas, C.; Lazau, C.; Popescu, M.I.; Baciu, A.; Manea, F. Advanced Electrodegradation of Doxorubicin in Water Using a 3-D Ti/SnO2 Anode. Water 2022, 14, 821. [Google Scholar] [CrossRef]
- Arana Juve, J.M.; Li, F.; Zhu, Y.; Liu, W.; Ottosen, L.D.M.; Zhao, D.; Wei, Z. Concentrate and degrade PFOA with a photo-regenerable composite of In-doped TNTs@AC. Chemosphere 2022, 300, 134495. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Xiang, B.; Li, Y.; Fang, J.; Huang, M. Preparation and characteristics of a nano-PbO2 anode for organic wastewater treatment. Chem. Eng. J. 2011, 166, 15–21. [Google Scholar] [CrossRef]
- Zhang, H.X.; Zhao, M.; Jiang, Q. Effect of oxygen vacancies on electronic structures and field emission properties of TiO2 nanotubes: A density-functional theory investigation. Appl. Phys. Lett. 2013, 103, 023111. [Google Scholar] [CrossRef]
- Khan, J.; Han, L. Oxygen Vacancy in TiO2: Production Methods and Properties of the Updates on Titanium Dioxide; Bejaoui, B., Ed.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- You, P.; Chen, D.; Liu, X.; Zhang, C.; Selloni, A.; Meng, S. Correlated electron-nuclear dynamics of photoinduced water dissociation on rutile TiO2. Nat. Mater 2024, 23, 1100–1106. [Google Scholar] [CrossRef]
- Huang, L.; Li, D.; Liu, J.; Yang, L.; Dai, C.; Ren, N.; Feng, Y. Construction of TiO2 nanotube clusters on Ti mesh for immobilizing Sb-SnO2 to boost electrocatalytic phenol degradation. J. Hazard. Mater. 2020, 393, 122329. [Google Scholar] [CrossRef]
- Chen, M.; Wang, C.; Wang, Y.; Meng, X.; Chen, Z.; Zhang, W.; Tan, G. Kinetic, mechanism and mass transfer impact on electrochemical oxidation of MIT using Ti-enhanced nanotube arrays/SnO2-Sb anode. Electrochim. Acta 2019, 323, 134779. [Google Scholar] [CrossRef]
- Liu, D.; Chen, D.; Jiang, L.; Hao, Z.; Tan, R.; Deng, B.; Wang, Y.; Tian, Y.; Chen, L.; Jia, B. Efficient degradation of sulfamethoxazole in heterogeneous Electro-Fenton process with CeO2@MoS2@GF modified cathode: Mechanism and degradation pathway. Sep. Purif. Technol. 2023, 320, 124212. [Google Scholar] [CrossRef]
- Fan, Z.; Zhao, H.; Wang, K.; Ran, W.; Sun, J.F.; Liu, J.; Liu, R. Enhancing Electrocatalytic Hydrodechlorination through Interfacial Microenvironment Modulation. Environ. Sci. Technol. 2023, 57, 1499–1509. [Google Scholar] [CrossRef]
- Ren, Q.; Zhang, W.; Yan, W.; Wang, Z. Highly stable and efficient Sb doped Ti/RuO2-IrO2-SnO2 electrode toward organic pollutants degradation by in situ generated oxidizing species. Sep. Purif. Technol. 2025, 354, 129345. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef]
- Li, L.; Xie, C.; Xiao, X. Polydopamine modified TiO2 nanotube arrays as a local drug delivery system for ibuprofen. J. Drug Deliv. Sci. Technol. 2020, 56, 101537. [Google Scholar] [CrossRef]
- He, W.Y.; Yang, S.Y.; Ye, K.J.; Bai, S.; Xu, S.Y.; Amrane, A.; Zhang, M.; Wang, H.; Wang, H.Q.; Yuan, Q.; et al. Synergistic effect of PDA and PVP on nanosized Pd doped graphite felt/Ni electrode for promoting the electrocatalytic degradation of 2,4-dichlorophenoxyacetic acid. Chem. Eng. J. 2024, 487, 150460. [Google Scholar] [CrossRef]
- Renuga, R.; Srinivasan, S. Effect of copper doped on the physio-chemical properties of tin dioxide nanostructures. Mater. Today Proc. 2020, 33, 3143–3147. [Google Scholar] [CrossRef]
- Du, X.; Oturan, M.A.; Zhou, M.; Belkessa, N.; Su, P.; Cai, J.; Trellu, C.; Mousset, E. Nanostructured electrodes for electrocatalytic advanced oxidation processes: From materials preparation to mechanisms understanding and wastewater treatment applications. Appl. Cata. B-Environ. 2021, 296, 120332. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, K.; Xu, H.; Yan, W. Electrochemical oxidation of rhodamine B by PbO2/Sb-SnO2/TiO2 nanotube arrays electrode. Chinese J. Catal. 2019, 40, 917–927. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Jiang, C.; Li, J.; Yu, G.; Deng, S.; Lu, S.; Zhang, P.; Zhu, C.; Zhuo, Q. Electrochemical mineralization of perfluorooctane sulfonate by novel F and Sb co-doped Ti/SnO2 electrode containing Sn-Sb interlayer. Chem. Eng. J. 2017, 316, 296–304. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, L.; He, J.; Zhang, J. Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim. Acta 2014, 117, 192–201. [Google Scholar] [CrossRef]
- Zhang, G.; Pei, J.; Wang, Y.; Wang, G.; Wang, Y.; Liu, W.; Xu, J.; An, P.; Huang, H.; Zheng, L.; et al. Selective Activation of Lattice Oxygen Site Through Coordination Engineering to Boost the Activity and Stability of Oxygen Evolution Reaction. Angew. Chem. Int. Edit. 2024, 63, e202407509. [Google Scholar] [CrossRef]
- Begum, S.; Ahmaruzzaman, M. CTAB and SDS assisted facile fabrication of SnO2 nanoparticles for effective degradation of carbamazepine from aqueous phase: A systematic and comparative study of their degradation performance. Water Res. 2018, 129, 470–485. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, Z.; Xu, J.; Zhou, W.; Zhang, C.; Lian, Y.; Bai, J.; Yu, C. SnO2/CoTeO3 heterojunction for smartly conducting hydrogen evolution linking to organics electrocatalytic oxidation. J. Power Sources 2024, 609, 234692. [Google Scholar] [CrossRef]
- Ho, N.A.D.; Duong, H.L.; Van Nhat, B.; Dan, N.H.; Thuan, N.C.; Son, T.B.; Hoinkis, J.; Luu, T.L. SnO2-Mixed Oxide Electrodes for Water Treatment: Role of the Low-Cost Active Anode. In Cost-Efficient Wastewater Treatment Technologies; Nasr, M., Negm, A.M., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2015; Volume 118, pp. 255–284. [Google Scholar]
- Ma, J.; Wang, T.; Zhao, Y.; Chang, F. Fabrication of Ti/SnO2-Sb electrodes containing RuO2 interlayer for efficient electrocatalytic oxidation of caprolactam wastewater. Int. J. Electrochem. Sci. 2024, 19, 100460. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, Z.; Wang, B.; Tao, M.; Ji, H.; Xiang, X.; Fu, Z.; Liao, L.; Liao, P.; Chen, R. Effective degradation of polystyrene microplastics by Ti/La/Co-Sb-SnO2 anodes: Enhanced electrocatalytic stability and electrode lifespan. Sci. Total Environ. 2024, 922, 171002. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Bi, Q.; Zhao, S.; Zhang, K.; Li, G.; Xue, J. Performance evaluation of a dynamic electrooxidation systems with magnetically functionalised UiO-66-NH2 and Ti/Sb-SnO2 for methotrexate treatment. Sep. Purif. Technol. 2025, 355, 129502. [Google Scholar] [CrossRef]
- He, Z.X.; Yu, H.T.; He, F.; Xie, Y.; Yuan, L.; Yi, T.F. Effects of Ru doping on the structural stability and electrochemical properties of Li2MoO3 cathode materials for Li-ion batteries. Dalton Trans. 2022, 51, 8786–8794. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, W.; Tan, G.; Duan, X.; Yuan, B.; Sendeku, M.G.; Liu, H.; Li, T.; Wang, F.; Kuang, Y.; et al. Single atomic Ru in TiO2 boost efficient electrocatalytic water oxidation to hydrogen peroxide. Sci. Bull. 2023, 68, 613–621. [Google Scholar] [CrossRef]
- Fasakin, O.; Oyedotun, K.O.; Kebede, M.; Rohwer, M.; Roux, L.L.; Mathe, M.; Eleruja, M.A.; Ajayi, E.O.B.; Manyala, N. Preparation and physico-chemical investigation of anatase TiO2 nanotubes for a stable anode of lithium-ion battery. Energy Rep. 2020, 6, 92–101. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Y.; Deng, J.; Wei, J.; Tam, H.L.; Chandran, B.K.; Dong, Z.; Chen, Z.; Chen, X. Mechanical Force-Driven Growth of Elongated Bending TiO2-based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries. Adv. Mater. 2014, 26, 6111–6118. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, K.; Wang, G.; Guo, W.; Ma, T. Effect of Annealing Temperature on the Hydrogen Production of TiO2 Nanotube Arrays in a Two-Compartment Photoelectrochemical Cell. J. Phys. Chem. 2011, 115, 12844–12849. [Google Scholar] [CrossRef]
- Rajasekhar, B.; Venkateshwaran, U.; Durairaj, N.; Divyapriya, G.; Nambi, I.M.; Joseph, A. Comprehensive treatment of urban wastewaters using electrochemical advanced oxidation process. J. Environ. Manag. 2020, 266, 110469. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, T.; Ren, K.; Yu, S.; Liu, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Metal-organic frameworks-derived Ru-doped Co2P/N-doped carbon composite nanosheet arrays as bifunctional electrocatalysts for hydrogen evolution and urea oxidation. Chem. Eng. J. 2021, 408, 127308. [Google Scholar] [CrossRef]
- Yu, X.; Dai, L.; Deng, J.; Liu, Y.; Jing, L.; Zhang, X.; Jiang, X.; Hou, Z.; Wang, J.; Dai, H. Catalytic performance and intermediates identification of trichloroethylene deep oxidation over Ru/3DOM SnO2 catalysts. J. Catal. 2021, 400, 310–324. [Google Scholar] [CrossRef]
- Milagres, J.L.; Bellato, C.R.; Vieira, R.S.; Ferreira, S.O.; Reis, C. Preparation and evaluation of the Ca-Al layered double hydroxide for removal of copper(II), nickel(II), zinc(II), chromium(VI) and phosphate from aqueous solutions. J. Environ. Chem. Eng. 2017, 5, 5469–5480. [Google Scholar] [CrossRef]
- Lu, Z.; Ma, D.; Yang, L.; Wang, X.; Xu, G.; Yang, Z. Direct CO oxidation by lattice oxygen on the SnO2(110) surface: A DFT study. Phys. Chem. Chem. Phys. 2014, 16, 12488–12494. [Google Scholar] [CrossRef] [PubMed]
- Saira, Y.; Li, Z.; Zhu, Y.; Liu, Q.; Luo, W.; Wang, Y.; Gong, M.; Fu, G.; Tang, Y. Low-loaded Ru on hollow SnO2 for enhanced electrocatalytic hydrogen evolution. Chem. Commun. 2024, 60, 2768–2771. [Google Scholar] [CrossRef]
- He, X.; Guo, H.; Liao, T.; Pu, Y.; Lai, L.; Wang, Z.; Tang, H. Electrochemically synthesized SnO2 with tunable oxygen vacancies for efficient electrocatalytic nitrogen fixation. Nanoscale 2021, 13, 16307–16315. [Google Scholar] [CrossRef]
- Ji, X.F.; Bi, L.Y.; Fu, Q.; Li, B.L.; Wang, J.W.; Jeong, S.Y.; Feng, K.; Ma, S.X.; Liao, Q.G.; Lin, F.R.; et al. Target Therapy for Buried Interface Enables Stable Perovskite Solar Cells with 25.05% efficiency. Adv. Mater. 2023, 35, 2303665. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Fu, H.F.; Yi, X.H.; Wang, P.; Zhao, C.; Wang, C.C.; Zheng, W.W. Simultaneous Cr(VI) reduction and Cr(III) removal of bifunctional MOF/Titanate nanotube composites. Environ. Pollut 2019, 249, 502–511. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, C.; Lu, J.; Hu, C.; Peng, S.; Chen, T. Electro-catalytic degradation of bisphenol A with modified Co3O4/β-PbO2/Ti electrode. Electrochim. Acta 2014, 118, 169–175. [Google Scholar] [CrossRef]
- Brovini, E.M.; Cardoso, S.J.; Quadra, G.R.; Vilas-Boas, J.A.; Paranaiba, J.R.; Pereira, R.O.; Mendonca, R.F. Glyphosate concentrations in global freshwaters: Are aquatic organisms at risk? Environ. Sci. Pollut. R. 2021, 28, 60635–60648. [Google Scholar] [CrossRef]
- Rahmani, A.; Seid-Mohammadi, A.; Leili, M.; Shabanloo, A.; Ansari, A.; Alizadeh, S.; Nematollahi, D. Electrocatalytic degradation of diuron herbicide using three-dimensional carbon felt/beta-PbO2 anode as a highly porous electrode: Influencing factors and degradation mechanisms. Chemosphere 2021, 276, 130141. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Guo, H.; Smith, R.L.; Qi, X. Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid via metal-organic framework-structured hierarchical Co3O4 nanoplate arrays. J. Colloid Interface Sci. 2023, 632, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Rubí-Juárez, H.; Cotillas, S.; Sáez, C.; Cañizares, P.; Barrera-Díaz, C.; Rodrigo, M.A. Removal of herbicide glyphosate by conductive-diamond electrochemical oxidation. Appl. Catal. B-Environ. 2016, 188, 305–312. [Google Scholar] [CrossRef]
- Aquino Neto, S.; de Andrade, A.R. Electrooxidation of glyphosate herbicide at different DSA® compositions: pH, concentration and supporting electrolyte effect. Electrochim. Acta. 2009, 54, 2039–2045. [Google Scholar] [CrossRef]
- Lan, H.; Jiao, Z.; Zhao, X.; He, W.; Wang, A.; Liu, H.; Liu, R.; Qu, J. Removal of glyphosate from water by electrochemically assisted MnO2 oxidation process. Sep. Purif. Technol. 2013, 117, 30–34. [Google Scholar] [CrossRef]
Electrodes | Operating Conditions | Removal Efficiency | Energy Consumption | Ref. |
---|---|---|---|---|
BDD | 0.59 mM, 10 mA/cm2; 0.5 M Na2CO3, Na2SO4, NaCl; pH = 3 | 79% (180 min) | — | [74] |
TiO2/BDD | 0.295 mM, 5 mA/cm2; 0.05 M NaCl; pH = 3 | 91.1% (300 min) | 1.39 (Wh/L) | [6] |
Ti/Ir0.3Sn0.7O2 | 5.9 mM, 50 mA/cm2; 0.5 M NaCl; pH = 3 | 91% (240 min) | — | [75] |
Ti/Ru0.36Ti0.64O2 | 0.59 mM, 10 mA/cm2; 0.15 M NaCl; pH = 3 | >90% (180 min) | 10.25 (Wh/L) | [7] |
Ti/RuO2 | 0.1 mM, 10 mA/cm2; 0.1 M Na2SO4; pH = 3 | 80.4% (120 min) | — | [76] |
Ti/PbO2 | 0.094 mM, 43 mA/cm2; 10 mM Na2SO4; | 95% (360 min) | 18 (Wh/L) | [5] |
GF/PDA/TiO2-NT/SnO2/Ru | 0.59 mM, 7 mA/cm2; 0.5 M NaCl; pH = 3 | near to 100% (30 min) | 0.088 (Wh/L) | this study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Bai, S.; Ye, K.; Xu, S.; Dan, Y.; Chen, M.; Fang, K. Co-Activating Lattice Oxygen of TiO2-NT and SnO2 Nanoparticles on Superhydrophilic Graphite Felt for Boosting Electrocatalytic Oxidation of Glyphosate. Nanomaterials 2024, 14, 1824. https://doi.org/10.3390/nano14221824
He W, Bai S, Ye K, Xu S, Dan Y, Chen M, Fang K. Co-Activating Lattice Oxygen of TiO2-NT and SnO2 Nanoparticles on Superhydrophilic Graphite Felt for Boosting Electrocatalytic Oxidation of Glyphosate. Nanomaterials. 2024; 14(22):1824. https://doi.org/10.3390/nano14221824
Chicago/Turabian StyleHe, Wenyan, Sheng Bai, Kaijie Ye, Siyan Xu, Yinuo Dan, Moli Chen, and Kuo Fang. 2024. "Co-Activating Lattice Oxygen of TiO2-NT and SnO2 Nanoparticles on Superhydrophilic Graphite Felt for Boosting Electrocatalytic Oxidation of Glyphosate" Nanomaterials 14, no. 22: 1824. https://doi.org/10.3390/nano14221824
APA StyleHe, W., Bai, S., Ye, K., Xu, S., Dan, Y., Chen, M., & Fang, K. (2024). Co-Activating Lattice Oxygen of TiO2-NT and SnO2 Nanoparticles on Superhydrophilic Graphite Felt for Boosting Electrocatalytic Oxidation of Glyphosate. Nanomaterials, 14(22), 1824. https://doi.org/10.3390/nano14221824