Nature of the Pits on the Lattice-Matched InAlAs Layer Surface Grown on the (001) InP Substrate
Abstract
:1. Introduction
2. Experiment
3. Results
3.1. Atomic Force Microscopy
3.2. Scanning Electron Microscopy
3.3. Micro-Photoluminescence
- The formation of the pits at the lattice-matched InAlAs/InP layer surface at TA > 505 °C is observed.
- Threading dislocations nucleated both in the InAlAs/InP heterointerface (for exact lattice-matched layers) and in the InAlAs bulk (for layers with the deviated alloy composition) are observed.
- The dislocation outcrops are correlated with the edges of surface pits.
- A ridge is formed along the perimeter of the pits.
- The density of pits increases with the TA and alloy composition deviation from the lattice-matched value.
- The lateral sizes of the pits increase with the total InAlAs layer thickness in the case of the lattice-matched layer or the depth of dislocation nucleating in the InAlAs bulk in the case of the alloy deviation.
- The depth of the pits increases with the total InAlAs layer thickness in the case of the lattice-matched layer or the depth of dislocation nucleating in the InAlAs bulk in the case of the alloy deviation and also with TS.
- Clusters with deviated/shifted PL band peak energy are detected. The density and lateral sizes of the clusters are in good agreement with the corresponding parameters of the surface pits.
- PL band peak deviation/shift corresponds to the local InAlAs alloy composition deviation with a magnitude of about 0.3–0.7%, increasing at/with TS.
4. Discussion
4.1. Surface Pit Formation Mechanisms
4.2. Modeling of Pit Formation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, H.; Wang, Z.; Liang, J.; Xu, B.; Wu, J.; Gong, Q.; Jiang, C.; Liu, F.; Zhou, W. InAs quantum dots in InAlAs matrix on (001)InP substrates grown by molecular beam epitaxy. J. Cryst. Growth 1998, 187, 564. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.H.; Hong, S.U.; Han, W.S.; Kwack, H.-S.; Lee, C.W.; Oh, D.K. Formation of self-assembled InAs quantum dots on InAl(Ga)As/InP and effects of a thin GaAs layer. J. Cryst. Growth 2003, 259, 252. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, J.H.; Hong, S.U.; Han, W.S.; Kwack, H.-S.; Lee, C.W.; Oh, D.K. Long-wavelength laser based on self-assembled InAs quantum dots in InAlGaAs on InP (001). Appl. Phys. Lett. 2004, 85, 1033. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, W.; Sun, Y.; Ye, S.; Al-Moathin, A.; Huang, Y.; Zhang, R.; Liang, S.; Qiu, B.; Xiong, J.; et al. Simulation of an AlGaInAs/InP Electro-Absorption Modulator Monolithically Integrated with Sidewall Grating Distributed Feedback Laser by Quantum Well Intermixing. Photonics 2022, 9, 564. [Google Scholar] [CrossRef]
- Lee, S.-T.; Kong, M.; Jang, H.; Song, C.-H.; Kim, S.; Yun, D.-Y.; Jeong, H.-S.; Kim, D.-H.; Shin, C.-S.; Seo, K.-S. The variation of Schottky barrier height induced by the phase separation of InAlAs layers on InP HEMT devices. Crystals 2022, 12, 966. [Google Scholar] [CrossRef]
- Ajayan, J.; Nirmal, D. A review of InP/InAlAs/InGaAs based transistors for high frequency applications. Superlattices Microstruct. 2015, 86, 1. [Google Scholar] [CrossRef]
- Gutowski, P.; Sankowska, I.; Słupinski, T.; Pierscinska, D.; Pierscinski, K.; Kuzmicz, A.; Gołaszewska-Malec, K.; Bugajski, M. Optimization of MBE Growth Conditions of In0.52Al0.48As Waveguide Layers for InGaAs/InAlAs/InP Quantum Cascade Lasers. Materials 2019, 12, 1621. [Google Scholar] [CrossRef]
- Hofstetter, D.; Beck, H.; Bour, D.P. Monolithically Integrated Michelson Interferometer Using an InGaAs/InAlAs Quantum Cascade Laser at λ = 4 μm. Photonics 2024, 11, 593. [Google Scholar] [CrossRef]
- Lyu, C.; Zhou, X.; Yu, H.; Wang, M.; Zhang, Y.; Pan, J. Improvement of Power and Efficiency of High-MesaSemi-Insulating InP: Fe Buried Heterostructure Lasers with Wide Bandgap Layers. Photonics 2023, 10, 1094. [Google Scholar] [CrossRef]
- Fukano, H.; Yamanaka, T.; Tamura, M.; Kondo, Y. Very-Low-Driving-Voltage Electroabsorption Modulators Operating at 40 Gb/s. J. Light. Technol. 2006, 24, 2219. [Google Scholar] [CrossRef]
- Chizh, A.L.; Mikitchuk, K.B.; Zhuravlev, K.S.; Dmitriev, D.V.; Toropov, A.I.; Valisheva, N.A.; Aksenov, M.S.; Gilinsky, A.M.; Chistokhin, I.B. High-power high-speed Schottky photodiodes for analog fiber-optic microwave signal transmission lines. Tech. Phys. Lett. 2019, 45, 739. [Google Scholar] [CrossRef]
- Smith, B.L.; Bittner, Z.S.; Hellstroem, S.D.; Nelson, G.T.; Slocum, M.A.; Norman, A.G.; Forbes, D.V.; Hubbard, S.M. InAlAs photovoltaic cell design for high device efficiency. Prog. Photovolt. Res. Appl. 2017, 25, 706. [Google Scholar] [CrossRef]
- Yuan, Q.; Liang, B.; Luo, S.; Wang, Y.; Yan, Q.; Wang, S.; Fu, G.; Mazur, Y.I.; Maidaniuk, Y.; Ware, M.E.; et al. Type-II GaSb quantum dots grown on InAlAs/InP (001) by droplet epitaxy. Nanotechnology 2020, 31, 315701. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Dudley, S.; Davies, B.; Bajaj, K.K. Role of kinetics and thermodynamics in alloy clustering and surface quality in InAlAs grown by molecular-beam epitaxy: Consequences for optical and transport properties. J. Appl. Phys. 1986, 60, 3167. [Google Scholar] [CrossRef]
- Choi, W.-Y.; Fonstad, C.G. Growth optimization of molecular beam epitaxy grown InAlAs on InP. J. Vac. Sci. Technol. B 1994, 12, 1013. [Google Scholar] [CrossRef]
- Lee, W. The growth of high mobility InGaAs and InAlAs layers by molecular beam epitaxy. J. Vac. Sci. Technol. B 1986, 4, 536. [Google Scholar] [CrossRef]
- Cho, A. Growth of III–V semiconductors by molecular beam epitaxy and their properties. Thin Solid Films 1983, 100, 291. [Google Scholar] [CrossRef]
- Arbiol, J.; Peiro, F.; Cornet, A.; Morante, J.R.; Michelakis, K.; Georgakilas, A. Comparison of homogeneously grown and temperature-graded InAlAs buffers in the range 400–560 °C: Effects on surface morphology and layer stability. Thin Solid Films 1999, 357, 61. [Google Scholar] [CrossRef]
- Peiró, F.; Cornet, A.; Morante, J.R.; Georgakilas, A.; Christou, A. Contrast modulations in InAIAs/InP. J. Electron. Mater. 1994, 23, 969. [Google Scholar] [CrossRef]
- Peiró, F.; Cornet, A.; Morante, J.R.; Georgakilas, A.; Zekentes, K.; Halkias, G. Interface defects and inhomogeneities induced by alloy clustering in InAlAs buffer layers grown on InP. Appl. Surf. Sci. 1993, 65–66, 447. [Google Scholar] [CrossRef]
- Peiro, F.; Cornet, A.; Herms, A.; Morante, J.R. Influence of the desorption and growth temperatures on the crystalline quality of molecular-beam epitaxy InAlAs layers. J. Vac. Sci. Technol. B 1992, 10, 2148–2152. [Google Scholar] [CrossRef]
- Aung, N.L.; Huang, X.; Charles, W.O.; Yao, N.; Gmachl, C.F. Effect of surface defects on InGaAs/InAlAs Quantum Cascade mesa current–voltage characteristics. J. Cryst. Growth 2012, 353, 35. [Google Scholar] [CrossRef]
- Georgakilas, A.; Halkias, G.; Christou, A.; Kornilios, N.; Papavassiliou, C.; Zekentes, K.; Konstantinidis, G.; Peiró, F.; Cornet, A.; Ababou, S.; et al. A Comprehensive Optimization of InAlAs Molecular Beam Epitaxy for InGaAs/InAlAs HEMT Technology. J. Electrochem. Soc. 1993, 140, 1503. [Google Scholar] [CrossRef]
- Aksenov, M.S.; Genze, I.Y.; Chistokhin, I.B.; Zakirov, E.R.; Dmitriev, D.V.; Zhuravlev, K.S.; Gutakovskii, A.K.; Golyashov, V.A.; Tereshchenko, O.E. Annealing effect on the barrier characteristics and interface properties of Au/Pt/Ti/n-InAlAs Schottky contacts. Surf. Interfaces 2023, 39, 102920. [Google Scholar] [CrossRef]
- Tong, Z.; Ding, P.; Su, Y.; Niu, J.; Wang, D.; Jin, Z. Surface Improvement of InAlAs/InGaAs InP-Based HEMT Through Treatments of UV/Ozone and TMAH. IEEE J. Electron. Devices Soc. 2020, 8, 600. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, Y.; Ma, C.; Wang, Y.; Brechtken, B.; Haug, R.J.; Rugeramigabo, E.P.; Zopf, M.; Ding, F. Local droplet etching on InAlAs/InP surfaces with InAl droplets. AIP Adv. 2022, 12, 055302. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Xu, B.; Liang, J.; Wang, Z. Ordered InAs quantum dots in InAlAs matrix on (001) InP substrates grown by molecular beam epitaxy. Appl. Phys. Lett. 1998, 27, 2123. [Google Scholar] [CrossRef]
- Yang, X.R.; Xu, B.; Liang, L.Y.; Tang, C.G.; Ren, Y.Y.; Ye, X.L.; Wang, Z.G. Growth of high density self-assembled InAs quantum dots on As-pressure-modulated InAlAs multiplayer structures on InP(001) substrate. Nanotechnology 2007, 18, 215302. [Google Scholar] [CrossRef]
- Koo, B.H.; Makino, H.; Chang, J.H.; Hanada, T.; Yao, T. Structural and Optical Properties of InAs Quantum Dots with 1.55 μm Emission Grown on (100) InAlAs/InP by using MBE. J. Korean Phys. Soc. 2001, 39, 466. [Google Scholar]
- Snyder, C.W.; Orr, B.G.; Kesler, D.; Sander, L.M. Effect of Strain on Surface Morphology in Highly Strained InGaAs Film. Phys. Rev. Lett. 1991, 66, 3032. [Google Scholar] [CrossRef]
- Abramkin, D.S.; Petrushkov, M.O.; Bogomolov, D.B.; Emelyanov, E.A.; Yesin, M.Y.; Vasev, A.V.; Bloshkin, A.A.; Koptev, E.S.; Putyato, M.A.; Atuchin, V.V.; et al. Structural Properties and Energy Spectrum of Novel GaSb/AlP Self-Assembled Quantum Dots. Nanomaterials 2023, 13, 910. [Google Scholar] [CrossRef] [PubMed]
- Dubrovskii, V.G.; Cirlin, G.E.; Ustinov, V.M. Kinetics of the initial stage of coherent island formation in heteroepitaxial systems. Phys. Rev. B 2003, 68, 075409. [Google Scholar] [CrossRef]
- Abramkin, D.S.; Shamirzaev, V.T.; Putyato, M.A.; Gutakovskii, A.K.; Shamirzaev, T.S. Coexistence of type-I and type-II band alignment in Ga(Sb, P)/GaP heterostructures with pseudomorphic self-assembled quantum dots. JETP Lett. 2014, 99, 76. [Google Scholar] [CrossRef]
- Snyder, C.W.; Mansfield, J.F.; Orr, B.G. Kinetically controlled critical thickness for coherent islanding and thick highly strained pseudomorphic films of InxGa1−xAs on GaAs(100). Phys. Rev. B 1992, 46, 9551. [Google Scholar] [CrossRef] [PubMed]
- Abramkin, D.S.; Rumynin, K.M.; Bakarov, A.K.; Kolotovkina, D.A.; Gutakovskii, A.K.; Shamirzaev, T.S. Quantum Dots Formed in InSb/AlAs and AlSb/AlAs Heterostructure. JETP Lett. 2016, 103, 692. [Google Scholar] [CrossRef]
- Tu, Y.; Tersoff, J. Coarsening, Mixing, and Motion: The Complex Evolution of Epitaxial Islands. Phys. Rev. Lett. 2007, 98, 096103. [Google Scholar] [CrossRef]
- Abramkin, D.S.; Putyato, M.A.; Budennyy, S.A.; Gutakovskii, A.K.; Semyagin, B.R.; Preobrazhenskii, V.V.; Kolomys, O.F.; Strelchuk, V.V.; Shamirzaev, T.S. Atomic structure and energy spectrum of Ga(As,P)/GaP heterostructures. J. Appl. Phys. 2012, 112, 083713. [Google Scholar] [CrossRef]
- Abramkin, D.S.; Bakarov, A.K.; Gutakovskii, A.K.; Shamirzaev, T.S. Spinodal Decomposition in InSb/AlAs Heterostructures. Semiconductors 2018, 52, 1392. [Google Scholar] [CrossRef]
- Abramkin, D.S.; Putyato, M.A.; Gutakovskii, A.K.; Semyagin, B.R.; Preobrazhenskii, V.V.; Shamirzaev, T.S. New System of Self Assembled GaSb/GaP Quantum Dots. Semiconductors 2012, 46, 1534. [Google Scholar] [CrossRef]
- Abramkin, D.S.; Bakarov, A.K.; Putyato, M.A.; Emelyanov, E.A.; Kolotovkina, D.A.; Gutakovskii, A.K.; Shamirzaev, T.S. Formation of low-dimensional structures in the InSb/AlAs heterosystem. Semiconductors 2017, 51, 1233. [Google Scholar] [CrossRef]
- Abramkin, D.S.; Petrushkov, M.O.; Emelyanov, E.A.; Nenashev, A.V.; Yesin, M.Y.; Vasev, A.V.; Putyato, M.A.; Bogomolov, D.B.; Gutakovskiy, A.K.; Preobrazhenskiy, V.V. Formation of InAs/GaP Quantum-Well Heterostructures on Silicon Substrates by Molecular-Beam Epitaxy. Semiconductors 2021, 55, 194. [Google Scholar] [CrossRef]
- Dmitriev, D.V.; Kolosovsky, D.A.; Gavrilova, T.A.; Gutakovskii, A.K.; Toropov, A.I.; Zhuravlev, K.S. Transformation of the InP(001) surface upon annealing in an arsenic flux. Surf. Sci. 2021, 710, 121861. [Google Scholar] [CrossRef]
- Junno, B.; Jeppesen, S.; Miller, M.S.; Samuelson, L. A comparison of RHEED reconstruction phases on (100) InAs, GaAs and InP. J. Cryst. Growth 1996, 164, 66. [Google Scholar] [CrossRef]
- LeGoues, F.K.; Tersoff, J.; Reuter, M.C.; Hammar, M.; Tromp, R. Relaxation mechanism of Ge islands/Si(001) at low temperature. Appl. Phys. Lett. 1995, 67, 2317. [Google Scholar] [CrossRef]
- Knelangen, M.; Consonni, V.; Trampert, A.; Riechert, H. In situ analysis of strain relaxation during catalyst-free nucleation and growth of GaN nanowires. Nanotechnology 2010, 21, 245705. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, L.; Chai, R.; Wen, L.; Wang, Z.; Guo, W.; Wang, H.; Yang, S. Anisotropic Strain Relaxation in Semipolar (11-22) InGaN/GaN Superlattice Relaxed Templates. Nanomaterials 2022, 12, 3007. [Google Scholar] [CrossRef]
- Du, Y.; Xu, B.; Wang, G.; Miao, Y.; Li, B.; Kong, Z.; Dong, Y.; Wang, W.; Radamson, H.H. Review of Highly Mismatched III-V Heteroepitaxy Growth on (001) Silicon. Nanomaterials 2022, 12, 741. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815. [Google Scholar] [CrossRef]
- Van de Walle, C.G. Band lineups and deformation potentials the model-solid theory. Phys. Rev. B 1989, 39, 1871. [Google Scholar] [CrossRef]
- Wei, S.-H.; Zunger, A. Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends. Phys. Rev. B 1999, 60, 5404. [Google Scholar] [CrossRef]
- Alghoraibi, I.; Rohel, T.; Bertru, N.; Le Corre, A.; Letoublon, A.; Caroff, P.; Dehaese, O.; Loualiche, S. Self-assembled InAs quantum dots grown on InP (311)B substrates: Role of buffer layer and amount of InAs deposited. J. Cryst. Growth 2006, 293, 263. [Google Scholar] [CrossRef]
- Houdré, R.; Gueissaz, F.; Gailhanou, M.; Ganiére, J.-D.; Rudra, A.; Ilegems, M. Characterization of InGaAs and InAlAs layers on InP by four-crystal high resolution X-ray diffraction and wedge transmission electron microscopy. J. Cryst. Growth 1991, 111, 456. [Google Scholar] [CrossRef]
- Evans, K.R.; Stutz, C.E.; Lorance, D.K.; Jones, R.L. Cation incorporation rate limitations in molecular beam epitaxy: Effects of strain and surface composition. J. Vac. Sci. Technol. B 1989, 7, 259. [Google Scholar] [CrossRef]
- Penev, E.; Kratzer, P.; Scheffler, M. Effect of strain on surface diffusion in semiconductor heteroepitaxy. Phys. Rev. B 2001, 64, 085401. [Google Scholar] [CrossRef]
- Kratzer, P.; Penev, E.; Scheffler, M. First-principles studies of kinetics in epitaxial growth of III–V semiconductors. Appl. Phys. A 2002, 75, 79. [Google Scholar] [CrossRef]
- Dong, Z.; Zhao, C.; Jiang, H.; Li, J. A dissociated 60° dislocation and its strain fields near a Ge/Si heterostructure interface. Phys. B 2020, 583, 412039. [Google Scholar] [CrossRef]
- Sato, M.; Uwaha, M.; Saito, Y. Instabilities of steps induced by the drift of adatoms and effect of the step permeability. Phys. Rev. B 2000, 62, 8452. [Google Scholar] [CrossRef]
- Christmann, K. Surface physical chemistry. In Introduction to Surface Physical Chemistry; Springer Nature: Dordrecht, The Netherlands, 1991; p. 27. [Google Scholar]
- Mozume, T.; Ohbu, I. Desorption of Indium during the Growth of GaAs/InGaAs/GaAs Heterostructures by Molecular Beam Epitaxy. Jpn. J. Appl. Phys. 1992, 31, 3277. [Google Scholar] [CrossRef]
- Goldstein, B.; Szostak, D. Preferential evaporation of In from GaxIn1−xAs. Appl. Phys. Lett. 1975, 26, 685. [Google Scholar] [CrossRef]
- Mukherjee, K.; Beaton, D.A.; Mascarenhas, A.; Bulsara, M.T.; Fitzgerald, E.A. Effects of dislocation strain on the epitaxy of lattice-mismatched AlGaInP layers. J. Cryst. Growth 2014, 392, 74. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulyaev, D.V.; Abramkin, D.S.; Dmitriev, D.V.; Toropov, A.I.; Kolosovsky, E.A.; Ponomarev, S.A.; Kurus, N.N.; Milekhin, I.A.; Zhuravlev, K.S. Nature of the Pits on the Lattice-Matched InAlAs Layer Surface Grown on the (001) InP Substrate. Nanomaterials 2024, 14, 1842. https://doi.org/10.3390/nano14221842
Gulyaev DV, Abramkin DS, Dmitriev DV, Toropov AI, Kolosovsky EA, Ponomarev SA, Kurus NN, Milekhin IA, Zhuravlev KS. Nature of the Pits on the Lattice-Matched InAlAs Layer Surface Grown on the (001) InP Substrate. Nanomaterials. 2024; 14(22):1842. https://doi.org/10.3390/nano14221842
Chicago/Turabian StyleGulyaev, Dmitrii V., Demid S. Abramkin, Dmitriy V. Dmitriev, Alexander I. Toropov, Eugeniy A. Kolosovsky, Sergey A. Ponomarev, Nina N. Kurus, Ilya A. Milekhin, and Konstantin S. Zhuravlev. 2024. "Nature of the Pits on the Lattice-Matched InAlAs Layer Surface Grown on the (001) InP Substrate" Nanomaterials 14, no. 22: 1842. https://doi.org/10.3390/nano14221842
APA StyleGulyaev, D. V., Abramkin, D. S., Dmitriev, D. V., Toropov, A. I., Kolosovsky, E. A., Ponomarev, S. A., Kurus, N. N., Milekhin, I. A., & Zhuravlev, K. S. (2024). Nature of the Pits on the Lattice-Matched InAlAs Layer Surface Grown on the (001) InP Substrate. Nanomaterials, 14(22), 1842. https://doi.org/10.3390/nano14221842