Improving the NO2 Gas Sensing Performances at Room Temperature Based on TiO2 NTs/rGO Heterojunction Nanocomposites
Abstract
:1. Introduction
2. Experimental Details
2.1. Synthesis of Materials
2.2. Characterization
2.3. Fabrication and Measurement of the Gas Sensor
3. Results and Discussion
3.1. Structural and Morphological Characteristics
3.2. Raman and XPS Characteristics
3.3. Gas Sensing Properties
3.4. Gas Sensing Mechanism of TiO2 NTs/rGO Nanocomposites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deng, S.; Tjoa, V.; Fan, H.M.; Tan, H.R.; Sayle, D.C.; Olivo, M.; Mhaisalkar, S.; Wei, J.; Sow, C.H. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 2012, 134, 4905–4917. [Google Scholar] [CrossRef] [PubMed]
- Turlybekuly, A.; Sarsembina, M.; Mentbayeva, A.; Bakenov, Z.; Soltabayev, B. CuO/TiO2 heterostructure-based sensors for conductometric NO2 and N2O gas detection at room temperature. Sens. Actuators B 2023, 397, 134635. [Google Scholar] [CrossRef]
- Hu, J.; Zou, C.; Su, Y.; Li, M.; Ye, X.; Cai, B.; Kong, E.S.; Yang, Z.; Zhang, Y. Light-assisted recovery for a highly-sensitive NO2 sensor based on RGO-CeO2 hybrids. Sens. Actuators B Chem. 2018, 270, 119–129. [Google Scholar] [CrossRef]
- Gu, F.; Nie, R.; Han, D.; Wang, Z. In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sens. Actuators B Chem. 2015, 219, 94–99. [Google Scholar] [CrossRef]
- Kim, H.W.; Kwon, Y.J.; Mirzaei, A.; Kang, S.Y.; Choi, M.S.; Bang, J.H.; Kim, S.S. Synthesis of zinc oxide semiconductors-graphene nanocomposites by microwave irradiation for application to gas sensors. Sens. Actuators B Chem. 2017, 249, 590–601. [Google Scholar] [CrossRef]
- Young, S.-J.; Chu, Y.-L. Hydrothermal Synthesis and Improved CH3OH-Sensing Performance of ZnO Nanorods with Adsorbed Au NPs. IEEE Trans. Electron Devices 2021, 68, 1886–1891. [Google Scholar] [CrossRef]
- Chu, Y.-L.; Young, S.-J.; Ji, L.-W.; Chu, T.-T.; Lam, K.-T.; Hsiao, Y.-J.; Tang, I.-T.; Kuo, T.-H. Characteristics of Gas Sensors Based on Co-Doped ZnO Nanorod Arrays. J. Electrochem. Soc. 2020, 167, 117503. [Google Scholar] [CrossRef]
- Zhang, D.H.; Liu, Z.Q.; Li, C.; Tang, T.; Liu, X.L.; Han, S.; Lei, B.; Zhou, C.W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004, 4, 1919–1924. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Chang, S.J.; Ji, L.W.; Hsiao, Y.J.; Tang, I.T.; Lu, H.Y.; Chu, Y.L. High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode. ACS Omega 2018, 3, 13798–13807. [Google Scholar] [CrossRef]
- Wetchakun, K.; Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Siriwong, C.; Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B-Chem. 2011, 160, 580–591. [Google Scholar] [CrossRef]
- Young, S.-J.; Chu, Y.-L. Platinum Nanoparticle-Decorated ZnO Nanorods Improved the Performance of Methanol Gas Sensor. J. Electrochem. Soc. 2020, 167, 147508. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, X.; Wang, Y. Remarkable improvement of W18O49/TiO2 heteronanowires in ambient temperature-responsive NO2-sensing abilities and its unexpected n-p transition phenomenon. Sens. Actuators B 2017, 240, 477–486. [Google Scholar] [CrossRef]
- Korotcenkov, G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R 2008, 61, 1–39. [Google Scholar] [CrossRef]
- Sun, F.Q.; Cai, W.P.; Li, Y.; Jia, L.C.; Lu, F. Direct growth of mono- and multilayer nanostructured porous films on curved surfaces and their application as gas sensors. Adv. Mater. 2005, 17, 2872–2877. [Google Scholar] [CrossRef]
- Yuan, W.J.; Liu, A.R.; Huang, L.; Li, C.; Shi, G.Q. High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 2013, 25, 766–771. [Google Scholar] [CrossRef]
- Jung, M.W.; Kang, S.M.; Nam, K.H.; An, K.S.; Ku, B.C. Highly transparent and flexible NO2 gas sensor film based on MoS2/rGO composites using soft lithographic patterning. Appl. Suf. Sci. 2018, 456, 7–12. [Google Scholar] [CrossRef]
- Liu, X.; Sun, J.B.; Zhang, X.T. Novel 3D graphene aerogel-ZnO composites as efficient detection for NO2 at room temperature. Sens. Actuators B 2015, 211, 220–226. [Google Scholar] [CrossRef]
- Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuat. B Chem. 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Murali, G.; Reddeppa, M.; Seshendra Reddy, C.; Park, S.; Chandrakalavathi, T.; Kim, M.D.; In, I. Enhancing the charge carrier separation and transport via nitrogen-doped graphene quantum dot-TiO2 nanoplate hybrid structure for an efficient NO gas sensor. ACS Appl. Mater. Interfaces 2020, 12, 13428–13436. [Google Scholar] [CrossRef]
- Li, R.; Xu, Z.; Mao, B.; Xie, G.; Wang, Y.; Liu, Z.; Fang, H. Pt/GO/TiO2 room-temperature hydrogen sensing Schottky diode: High resistance to humidity interference endowed by the graphene oxide interlayer. Sens. Actuators B Chem. 2024, 408, 135569. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, Z.; Li, Q.; Zhang, X.; Sun, W.; Sun, J.; Liu, B.; Ha, B. The enhanced NO2 sensing properties of SnO2 nanoparticles/reduced graphene oxide composite. J. Colloid Interface Sci. 2019, 537, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Giampiccolo, A.; Tobaldi, D.M.; Leonardi, S.G.; Murdoch, B.J.; Seabra, M.P.; Ansell, M.P.; Neri, G.; Ball, R.J. Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl. Catal. B Environ. 2019, 243, 183–194. [Google Scholar] [CrossRef]
- Liu, S.; Yu, B.; Zhang, H.; Fei, T.; Zhang, T. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B Chem. 2014, 202, 272–278. [Google Scholar] [CrossRef]
- Shafiei, M.; Bradford, J.; Khan, H.; Piloto, C.; Wlodarski, W.; Li, Y.; Motta, N. Low-operating temperature NO2 gas sensors based on hybrid two-dimensional SnS2-reduced graphene oxide. Appl. Surf. Sci. 2018, 462, 330–336. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Guo, D.; Guo, J.; Su, Y. Room-temperature synthesis of CuO/reduced graphene oxide nanohybrids for high-performance NO2 gas sensor. Sens. Actuators B Chem. 2018, 271, 306–310. [Google Scholar] [CrossRef]
- Rambabu, Y.; Kumar, U.; Singhal, N.; Kaushal, M.; Jaiswal, M.; Jain, S.L.; Roy, S.C. Photocatalytic reduction of carbon dioxide using graphene oxide wrapped TiO2 nanotubes. Appl. Surf. Sci. 2019, 485, 48–55. [Google Scholar] [CrossRef]
- Wang, J.; Ke, L.; Wu, J.; Liang, F.; Xiang, Y. Research and Development of Online Monitoring Protection Sensors for Paper Books Based on TiO2 NT/MoS2. Coatings 2024, 14, 552. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; He, S.; Chen, Z.; Qiu, W.; Yu, Y. Development and Application of a Nano-Gas Sensor for Monitoring and Preservation of Ancient Books in the Library. Coatings 2024, 14, 553. [Google Scholar] [CrossRef]
- Lv, K.; Fang, S.; Si, L.; Xia, Y.; Ho, W.; Li, M. Fabrication of TiO2 nanorod assembly grafted rGO (rGO@TiO2-NR) hybridized flake-like photocatalyst. Appl. Surf. Sci. 2017, 391, 218–227. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, H.P.; Cui, X.L.; Lin, Y.H. Graphene/TiO2 nanocomposites: Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J. Mater. Chem. 2010, 20, 2801–2806. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cancado, L.G.; Jorio, A.; Saito, R. Studying disordering graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cui, J.; Tao, C.; Wu, Y.; Li, Z.; Ma, L. A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angew. Chem. Int. Ed. 2009, 48, 5848–5864. [Google Scholar] [CrossRef] [PubMed]
- Moussa, S.; Panchakarla, L.S.; Ho, M.Q.; El-Shall, M.S. Graphene supported iron-based nanoparticles for catalytic production of liquid hydrocarbons from synthesis gas. ACS Catal. 2014, 4, 535–545. [Google Scholar] [CrossRef]
- Saha, R.; Thukral, A.; Pal, A.; Saini, P. Sunlight responsive superhydrophilic rGO-TiO2 nanocomposite coatings for photovoltaic applications. Diam. Relat. Mater. 2024, 149, 111603. [Google Scholar] [CrossRef]
- Lin, Z.; Waller, G.; Liu, Y.; Liu, M.; Wong, C.P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884. [Google Scholar] [CrossRef]
- Wang, C.; Xue, J.; Qiang, L.; Tang, J. A facile and efficient method to directly synthesize TiO2/rGO with enhanced photocatalytic performance. Superlattices Microstruct. 2018, 121, 1–8. [Google Scholar]
- Dong, F.; Guo, S.; Wang, H.; Li, X.; Wu, Z. Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. J. Phys. Chem. C 2011, 115, 13285–13292. [Google Scholar] [CrossRef]
- Perera, S.; Mariano, R.; Vu, K.; Nour, N.; Seitz, O.; Chabal, Y.; Balkus, K. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2012, 2, 949–956. [Google Scholar] [CrossRef]
- Niu, X.; Yan, W.; Zhao, H.; Yang, J. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity. Appl. Surf. Sci. 2018, 440, 804–813. [Google Scholar] [CrossRef]
- Harathi, N.; Bollu, M.; Pasupuleti, K.S.; Tauanov, Z.; Peta, K.R.; Kim, M.-D.; Reddeppa, M.; Sarkar, A.; Rao, V.N. PrGO decorated TiO2 nanoplates hybrid nanocomposite for augmented NO2 gas detection with faster gas kinetics under UV light irradiation. Sens. Actuators B Chem. 2022, 358, 131503. [Google Scholar] [CrossRef]
- Maziarz, W. TiO2/SnO2 and TiO2/CuO thin film nano-heterostructures as gas sensors. Appl. Sur. Sci. 2019, 480, 361–370. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, Y.; Yu, Y.; Tian, C.; Zou, C. Improving the NO2 Gas Sensing Performances at Room Temperature Based on TiO2 NTs/rGO Heterojunction Nanocomposites. Nanomaterials 2024, 14, 1844. https://doi.org/10.3390/nano14221844
Ling Y, Yu Y, Tian C, Zou C. Improving the NO2 Gas Sensing Performances at Room Temperature Based on TiO2 NTs/rGO Heterojunction Nanocomposites. Nanomaterials. 2024; 14(22):1844. https://doi.org/10.3390/nano14221844
Chicago/Turabian StyleLing, Yan, Yunjiang Yu, Canxin Tian, and Changwei Zou. 2024. "Improving the NO2 Gas Sensing Performances at Room Temperature Based on TiO2 NTs/rGO Heterojunction Nanocomposites" Nanomaterials 14, no. 22: 1844. https://doi.org/10.3390/nano14221844
APA StyleLing, Y., Yu, Y., Tian, C., & Zou, C. (2024). Improving the NO2 Gas Sensing Performances at Room Temperature Based on TiO2 NTs/rGO Heterojunction Nanocomposites. Nanomaterials, 14(22), 1844. https://doi.org/10.3390/nano14221844