Thermal Performance Analysis of a Nonlinear Couple Stress Ternary Hybrid Nanofluid in a Channel: A Fractal–Fractional Approach
Abstract
:1. Introduction
2. Description of the Problem
3. Fractal–Fractional Model
4. Discretization of the Model
5. Nusselt Number
6. Results
7. Concluding Remarks
- ❖
- Fractal–fractional operators provide a range of outcomes that closely align with theoretical discoveries and experimental investigations.
- ❖
- The numerical approach under consideration is capable of analyzing fourth-order nonlinear coupled partial differential equations (PDEs).
- ❖
- Ternary hybrid nanofluid yields the most favorable outcomes in terms of increasing the heat transfer rate by up to 12.01% when dispersing a 4% concentration of ternary hybrid nanocomposites consisting of Al2O3 + TiO2 + Cu in the base fluid, water.
- ❖
- In binary hybrid nanofluids, the addition of Al2O3 + Cu increases the heat transfer rate of the base fluid water by 10.50%. This is followed by TiO2 + Cu, which boosts heat transfer by 10.40%, and Al2O3 + TiO2, which improves heat transmission by 10.10%.
- ❖
- When considering the dispersion of nanoparticles separately, Cu provides a heat transfer boost of 9.51%, followed by Al2O3 with 9.40% and TiO2 with 9.42% heat transfer enhancement.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Name | Symbol | Name |
Density of ternary hybrid nanofluid | External pressure gradient | ||
The viscosity of ternary hybrid nanofluid | Couple stress parameter | ||
Electrical conductivity of ternary hybrid nanofluid | Fractional order | ||
Thermal expansion coefficient of ternary hybrid nanofluid | Fractal dimension | ||
Specific heat capacity of ternary hybrid nanofluid | Integral function | ||
Thermal conductivity of ternary hybrid nanofluid | Normalization function | ||
Velocity function in dimensional form | Error function | ||
Velocity function in non-dimensional form | Temperature distribution in dimensional form | ||
Temperature distribution in non-dimensional form | The volume fraction of the nanoparticle |
References
- Atangana, A. Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 2017, 102, 396–406. [Google Scholar] [CrossRef]
- Choi, U.S. Enhancing thermal conductivity of fluids with nanoparticles. AS-MEFED 1995, 231, 99–103. [Google Scholar]
- Khanafer, K.; Vafai, K.; Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass. Transf. 2003, 46, 3639–3653. [Google Scholar] [CrossRef]
- Ahmad, Z.; Crisci, S.; Murtaza, S.; Toraldo, G. Numerical insights of fractal–fractional modeling of magnetohydrodynamic Casson hybrid nanofluid with heat transfer enhancement. Math. Methods Appl. Sci. 2024, 47, 9046–9066. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K. A review on the applications of nanofluids in solar energy field. Renew Energy 2018, 123, 398–406. [Google Scholar] [CrossRef]
- Murtaza, S.; Ahmad, Z. Analysis of Clay Based Cementitious Nanofluid Subjected to Newtonian Heating and Slippage Conditions with Constant Proportional Caputo Derivative. GeoStruct Innov. (GSI) 2024, 2, 53–67. [Google Scholar] [CrossRef]
- Khanafer, K.; Vafai, K. A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass. Transf. 2011, 54, 4410–4428. [Google Scholar] [CrossRef]
- Murtaza, S.; Kumam, P.; Sutthibutpong, T.; Suttiarporn, P.; Srisurat, T.; Ahmad, Z. Fractal-fractional analysis and numerical simulation for the heat transfer of ZnO + Al2O3 + TiO2/DW based ternary hybrid nanofluid. ZAMM-J. Appl. Math. Mech./Z. Für Angew. Math. Und Mech. 2024, 104, e202300459. [Google Scholar] [CrossRef]
- Liu, J.Y.; Xia, Y.; Ma, J.L. Development and Application of Eco-Friendly Micro-Nano Filtrate Reducers and High-Performance Water-Based Drilling Fluids. Acadlore Trans. Geosci. 2024, 3, 98–105. [Google Scholar] [CrossRef]
- Trisaksri, V.; Wongwises, S. Critical review of heat transfer characteristics of nanofluids. Renew. Sustain. Energy Rev. 2017, 11, 512–523. [Google Scholar] [CrossRef]
- Ahmad, A.; Murtaza, S.; Khan, R. Application of Laplace transform technique of variable order to the generalized Caputo fractional model of second grade nanofluid. Acadlore Trans. Appl. Math. Stat. 2024, 2, 133–149. [Google Scholar] [CrossRef]
- Kakaç, S.; Pramuanjaroenkij, A. Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass. Transf. 2009, 52, 3187–3196. [Google Scholar] [CrossRef]
- Chakraborty, S.; Panigrahi, P.K. Stability of nanofluid: A review. Appl. Therm. Eng. 2020, 174, 115259. [Google Scholar] [CrossRef]
- Sarkar, J. A critical review on convective heat transfer correlations of nanofluids. Renew. Sustain. Energy Rev. 2011, 11, 3271–3277. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, H.; Wang, L.; Yang, C.-Y.; He, Y.; Yang, W.; Lee, W.P.; Zhang, L.; Huo, R. Heat transfer intensification using nanofluids. KONA Powder Part. J. 2007, 25, 23–38. [Google Scholar] [CrossRef]
- Kleinstreuer, C.; Li, J.; Koo, J. Microfluidics of nano-drug delivery. Int. J. Heat Mass. Transf. 2008, 51, 5590–5597. [Google Scholar] [CrossRef]
- Makishima, A. Possibility of hybrid materials. Ceram. Jap. 2004, 39, 90–91. [Google Scholar]
- Sarkar, J.; Ghosh, P.; Adil, A. A review on hybrid nanofluids: Recent research, development and applications. Renew. Sustain. Energy Rev. 2015, 43, 164–177. [Google Scholar] [CrossRef]
- Waini, I.; Ishak, A.; Groşan, T.; Pop, I. Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. Int. Commun. Heat Mass Transf. 2020, 114, 104565. [Google Scholar] [CrossRef]
- Manjunatha, S.; Puneeth, V.; Gireesha, B.J.; Chamkha, A. Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. J. Appl. Comput. Mech. 2022, 8, 1279–1286. [Google Scholar]
- Ahmed, W.; Kazi, S.N.; Chowdhury, Z.Z.; Johan, M.R.B.; Mehmood, S.; Soudagar, M.E.M.; Mujtaba, M.A.; Gul, M.; Ahmad, M.S. Heat transfer growth of sonochemically synthesized novel mixed metal oxide ZnO+ Al2O3+ TiO2/DW based ternary hybrid nanofluids in a square flow conduit. Renew. Sustain. Energy Rev. 2021, 145, 111025. [Google Scholar] [CrossRef]
- Xuan, Z.; Zhai, Y.; Ma, M.; Li, Y.; Wang, H. Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids. J. Mol. Liq. 2021, 323, 114889. [Google Scholar] [CrossRef]
- Zhao, J.; He, Y.; Wang, Y.; Wang, W.; Yan, L.; Luo, J. An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications. Tribol. Int. 2016, 97, 14–20. [Google Scholar] [CrossRef]
- Shah, N.A.; Wakif, A.; El-Zahar, E.R.; Thumma, T.; Yook, S.J. Heat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana-Baleanu time-fractional integral. Alex. Eng. J. 2022, 61, 10045–10053. [Google Scholar] [CrossRef]
- Dezfulizadeh, A.; Aghaei, A.; Hassani Joshaghani, A.; Najafizadeh, M.M. Exergy efficiency of a novel heat exchanger under MHD effects filled with water-based Cu–SiO2-MWCNT ternary hybrid nanofluid based on empirical data. J. Therm. Anal. Calorim. 2022, 147, 4781–4804. [Google Scholar] [CrossRef]
- Li, S.; Puneeth, V.; Saeed, A.M.; Singhal, A.; Al-Yarimi, F.A.; Khan, M.I.; Eldin, S.M. Analysis of the Thomson and Troian velocity slip for the flow of ternary nanofluid past a stretching sheet. Sci. Rep. 2023, 13, 2340. [Google Scholar] [CrossRef]
- Aleem, M.; Asjad, M.I.; Shaheen, A.; Khan, I.M.H.D. Influence on different water based nanofluids (TiO2, Al2O3, CuO) in porous medium with chemical reaction and newtonian heating. Chaos Solitons Fractals 2020, 130, 109437. [Google Scholar] [CrossRef]
Properties | Correlations |
---|---|
Density | |
Viscosity | |
Volumetric Expansion | |
Specific Heat Capacity | |
Thermal Conductivity | |
Electrical Conductivity |
Properties | ||||
---|---|---|---|---|
997.1 | 4.186 | 0.613 | 21.00 | |
3970 | 765 | 40 | 0.85 | |
4250 | 686.2 | 8.9528 | 0.90 | |
8933 | 385 | 401 | 1.67 |
Unary Nanofluid | ||||||
---|---|---|---|---|---|---|
Nu for Al2O3 | % Enhancement | Nu for TiO2 | % Enhancement | Nu for Cu | % Enhancement | |
0 | 3.2801 | -- | 3.2801 | -- | 3.2801 | -- |
0.01 | 3.3573 | 2.35 | 3.3632 | 2.53 | 3.3719 | 2.8 |
0.02 | 3.3923 | 3.42 | 3.3991 | 3.63 | 3.3998 | 3.65 |
0.03 | 3.5345 | 7.76 | 3.5392 | 7.90 | 3.5192 | 7.29 |
0.04 | 3.5883 | 9.4 | 3.5892 | 9.42 | 3.5919 | 9.51 |
Binary Hybrid Nanofluid | ||||||
---|---|---|---|---|---|---|
Nu for Al2O3 + TiO2 | % Enhancement | Nu for TiO2 + Cu | % Enhancement | Nu for Al2O3 + Cu | % Enhancement | |
0 | 3.2801 | -- | 3.2801 | -- | 3.2801 | -- |
0.01 | 3.3918 | 3.41 | 3.3929 | 3.44 | 3.3932 | 3.45 |
0.02 | 3.429 | 4.54 | 3.4291 | 4.54 | 3.4329 | 4.66 |
0.03 | 3.5482 | 8.17 | 3.5502 | 8.23 | 3.5529 | 8.32 |
0.04 | 3.6129 | 10.10 | 3.6198 | 10.40 | 3.6239 | 10.50 |
Ternary Hybrid Nanofluid | ||
---|---|---|
Nu for Al2O3 + TiO2 + Cu | % Enhancement | |
0 | 3.2801 | -- |
0.01 | 3.4083 | 3.41 |
0.02 | 3.4726 | 5.87 |
0.03 | 3.5931 | 89.54 |
0.04 | 3.6728 | 12.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murtaza, S.; Becheikh, N.; Rahman, A.U.; Sambas, A.; Maatki, C.; Kolsi, L.; Ahmad, Z. Thermal Performance Analysis of a Nonlinear Couple Stress Ternary Hybrid Nanofluid in a Channel: A Fractal–Fractional Approach. Nanomaterials 2024, 14, 1855. https://doi.org/10.3390/nano14221855
Murtaza S, Becheikh N, Rahman AU, Sambas A, Maatki C, Kolsi L, Ahmad Z. Thermal Performance Analysis of a Nonlinear Couple Stress Ternary Hybrid Nanofluid in a Channel: A Fractal–Fractional Approach. Nanomaterials. 2024; 14(22):1855. https://doi.org/10.3390/nano14221855
Chicago/Turabian StyleMurtaza, Saqib, Nidhal Becheikh, Ata Ur Rahman, Aceng Sambas, Chemseddine Maatki, Lioua Kolsi, and Zubair Ahmad. 2024. "Thermal Performance Analysis of a Nonlinear Couple Stress Ternary Hybrid Nanofluid in a Channel: A Fractal–Fractional Approach" Nanomaterials 14, no. 22: 1855. https://doi.org/10.3390/nano14221855
APA StyleMurtaza, S., Becheikh, N., Rahman, A. U., Sambas, A., Maatki, C., Kolsi, L., & Ahmad, Z. (2024). Thermal Performance Analysis of a Nonlinear Couple Stress Ternary Hybrid Nanofluid in a Channel: A Fractal–Fractional Approach. Nanomaterials, 14(22), 1855. https://doi.org/10.3390/nano14221855