Hydrothermal and Co-Precipitation Combined with Photo-Reduced Preparation of Ag/AgBr/MgBi2O6 Composites for Visible Light Degradation Toward Organics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Characterization of the Prepared MgBi2O6-Based Composites
2.3. Synthesis of Ag/AgBr/MgBi2O6 Composites
2.4. Photodegradation MB Procedure
2.5. Evaluation of Charge Separation Efficiency and Recombination Rate
2.6. Scavenger Test
3. Results and Discussion
3.1. Characterization
3.2. Degradation Performance
3.3. Degradation Mechanism
3.4. Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wani, N.A.; Malik, N.A.; Tantary, Y.R.; Jan, I.; Ahmad, T.; Wani, M.S. Emerging techniques for treatment of wastewater. In Aquatic Contamination: Tolerance and Bioremediation; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2024; pp. 1–23. [Google Scholar]
- Ethiraj, S.; Samuel, M.S.; Indumathi, S. A comprehensive review of the challenges and opportunities in microalgae-based wastewater treatment for eliminating organic, inorganic, and emerging pollutants. Biocatal. Agric. Biotechnol. 2024, 60, 103316. [Google Scholar] [CrossRef]
- Kulabhusan, P.K.; Campbell, K. Physio-chemical treatments for the removal of cyanotoxins from drinking water: Current challenges and future trends. Sci. Total Environ. 2024, 917, 170078. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Zuo, Y. Research and application of water treatment technologies for emerging contaminants (ECs): A pathway to solving water environment challenges. Water 2024, 16, 1837. [Google Scholar] [CrossRef]
- Obi, L.U.; Olisaka, F.N.; Onyia, F.C.; Innocent, I.H.; Onyemaechi, P. Physical and biological removal of the mass load of emergent pollutants from waste treatment facilities. In Emergent Pollutants in Freshwater Plankton Communities; CRC Press: Boca Raton, FL, USA, 2024; pp. 121–147. [Google Scholar]
- Foo, W.H.; Chia, W.Y.; Ende, S.; Chia, S.R.; Chew, K.W. Nanomaterials in aquaculture disinfection, water quality monitoring, and wastewater remediation. J. Environ. Chem. Eng. 2024, 12, 113947. [Google Scholar]
- Ma, J.; Chen, Y.; Zhou, G.; Ge, H.; Liu, H. Recent advances in photocatalytic degradation of tetracycline antibiotics. Catalysts 2024, 14, 762. [Google Scholar] [CrossRef]
- García-López, E.I.; Aoun, N.; Marcì, G. An overview of the sustainable depolymerization/degradation of polypropylene microplastics by advanced oxidation technologies. Molecules 2024, 29, 2816. [Google Scholar] [CrossRef] [PubMed]
- Nikseresht, M.; Sohrabi, S.; Zhang, J.; Iranshahi, D.; Moraveji, M.K. Microfluidic platform for semiconductor and MOF integrated photocatalysts: A review over synthesis approaches and applications. ChemistrySelect 2024, 9, e202402249. [Google Scholar] [CrossRef]
- Vaiano, V.; De Marco, I. Removal of azo dyes from wastewater through heterogeneous photocatalysis and supercritical water oxidation. Separations 2023, 10, 230. [Google Scholar] [CrossRef]
- Villegas-Fuentes, A.; Rosillo-de la Torre, A.; Vilchis-Nestor, A.; Luque, P. Improvement of the optical, photocatalytic and antibacterial properties of ZnO semiconductor nanoparticles using different pepper aqueous extracts. Chemosphere 2023, 339, 139577. [Google Scholar] [CrossRef]
- Hama Aziz, K.H.; Fatah, N.M.; Muhammad, K.T. Advancements in application of modified biochar as a green and low-cost adsorbent for wastewater remediation from organic dyes. R. Soc. Open Sci. 2024, 11, 232033. [Google Scholar] [CrossRef]
- Ashkanani, Z.; Mohtar, R.; Al-Enezi, S.; Smith, P.K.; Calabrese, S.; Ma, X.; Abdullah, M. AI-assisted systematic review on remediation of contaminated soils with PAHs and heavy metals. J. Hazard. Mater. 2024, 468, 133813. [Google Scholar] [CrossRef] [PubMed]
- Mohd, S.; Khan, A.M. Heterogeneous photocatalysis: Recent advances and applications. In Sustainable Green Catalytic Processes; Scrivener Publishing LLC: Beverly, MA, USA, 2024; pp. 141–163. [Google Scholar]
- Mishra, K.; Devi, N.; Siwal, S.S.; Gupta, V.K.; Thakur, V.K. Hybrid semiconductor photocatalyst nanomaterials for energy and environmental applications: Fundamentals, designing, and prospects. Adv. Sustain. Syst. 2023, 7, 2300095. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Yang, Z.; Zhu, Y.; Xia, Y. Bismuth-based metal-organic frameworks and derivatives for photocatalytic applications in energy and environment: Advances and challenges. Carbon Neutral. 2024, 3, 737–767. [Google Scholar] [CrossRef]
- Meira, A.C.R.; Tremarin, B.G.; Cursino, A.C.T.; de Oliveira Basso, R.L.; Bail, A.; Giona, R.M. In-situ preparation of a bismuth-based magnetic composite for catalytic reduction of 4-nitrophenol. Mater. Chem. Phys. 2022, 277, 125519. [Google Scholar] [CrossRef]
- Palma Soto, E.; Rodriguez Gonzalez, C.A.; Luque Morales, P.A.; Reyes Blas, H.; Carrillo, A. Degradation of organic dye congo red by heterogeneous solar photocatalysis with Bi2S3, Bi2S3/TiO2, and Bi2S3/ZnO thin films. Catalysts 2024, 14, 589. [Google Scholar] [CrossRef]
- Li, B.; Liu, X.J.; Zhu, H.W.; Guan, H.P.; Guo, R.T. A review on Bi2WO6-based materials for photocatalytic CO2 reduction. Small 2024, 2406074. [Google Scholar] [CrossRef]
- Sun, D.; Chen, Y.; Yu, X.; Yin, Y.; Tian, G. Novel defect-transit dual Z-scheme heterojunction: Sulfur-doped carbon nitride nanotubes loaded with bismuth oxide and bismuth sulfide for efficient photocatalytic amine oxidation. J. Colloid Interface Sci. 2024, 674, 225–237. [Google Scholar] [CrossRef]
- Xia, P.; Song, Y.; Liu, Y.-Z.; Long, M.-X.; Yang, C.; Zhang, X.-Y.; Zhang, T. Advances in optical and electronic properties and applications of bismuth-based semiconductor materials. J. Mater. Chem. C 2024, 12, 1609–1624. [Google Scholar] [CrossRef]
- Dai, Y.-D.; Lyu, R.-J.; Wu, T.; Huang, C.-C.; Lin, Y.-W. Influences of silver halides AgX (X= Cl, Br, and I) on magnesium bismuth oxide photocatalyst in methylene blue degradation under visible light irradiation. J. Photochem. Photobiol. A-Chem. 2020, 397, 112585. [Google Scholar] [CrossRef]
- Adam, F.A.; Ghoniem, M.; Diawara, M.; Rahali, S.; Abdulkhair, B.Y.; Elamin, M.; Aissa, M.A.B.; Seydou, M. Enhanced adsorptive removal of indigo carmine dye by bismuth oxide doped MgO based adsorbents from aqueous solution: Equilibrium, kinetic and computational studies. RSC Adv. 2022, 12, 24786–24803. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, M.; Yu, M.; Zhang, T.; Wang, J.; Bi, J.; Dong, F. Efficient photo-degradation of antibiotics by waste eggshells derived AgBr-CaCO3 heterostructure under visible light. Sep. Purif. Technol. 2023, 314, 123573. [Google Scholar] [CrossRef]
- Liu, Q.; Li, X.; Wan, Z.; Xu, D.; Liu, C. Enhanced photocatalytic activity and antibacterial potential of a novel ternary ZnO-Ag2MoO4-AgI heterojunction photocatalyst. Colloid Surf. A-Physicochem. Eng. Asp. 2024, 700, 134765. [Google Scholar] [CrossRef]
- Lee, P.-C.; Yang, Z.-R.; Kuo, C.-Y.; Shin, C.-H.; Lin, C.-B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 porous structure. J. Mater. Eng. Perform. 2023, 32, 7183–7194. [Google Scholar] [CrossRef]
- Li, K.; Xue, J.; Zhang, Y.; Wei, H.; Liu, Y.; Dong, C. ZnWO4 nanorods decorated with Ag/AgBr nanoparticles as highly efficient visible-light-responsive photocatalyst for dye AR18 photodegradation. Appl. Surf. Sci. 2014, 320, 1–9. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, Y.; Li, W.; Wang, F.; Li, H.; Liu, X.; Zhang, W.; Ren, C. Double Z-scheme system of silver bromide@bismuth tungstate/tungsten trioxide ternary heterojunction with enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 2018, 509, 18–24. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, W.; Guo, Y.; Zhao, Y.; Yuan, X.; Guo, Y. Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity. J. Hazard. Mater. 2014, 271, 150–159. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wu, B.; Zhou, T.; Wang, J.; Zhou, J.; Li, S.; Cao, F.; Qin, G. Preparation and visible-light-driven photocatalytic property of AgX (X= Cl, Br, I) nanomaterials. J. Alloys Compd. 2019, 776, 948–953. [Google Scholar] [CrossRef]
- Francis, M.M.; Thakur, A.; Balapure, A.; Dutta, J.R.; Ganesan, R. Fabricating effective heterojunction in metal-organic framework-derived self-cleanable and dark/visible-light dual mode antimicrobial CuO/AgX (X = Cl, Br, or I) nanocomposites. Chem. Eng. J. 2022, 446, 137363. [Google Scholar] [CrossRef]
- Shi, H.; Li, G.; Sun, H.; An, T.; Zhao, H.; Wong, P.-K. Visible-light-driven photocatalytic inactivation of E. coli by Ag/AgX-CNTs (X= Cl, Br, I) plasmonic photocatalysts: Bacterial performance and deactivation mechanism. Appl. Catal. B-Environ. 2014, 158, 301–307. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, X.; Lu, J.; Chen, H. Phase controlled synthesis and optical properties of ZnS thin films by pulsed laser deposition. Mater. Res. Bull. 2013, 48, 3843–3846. [Google Scholar] [CrossRef]
- Ma, M.; Yan, X.; Mao, Y.; Kang, H.; Yan, Q.; Zhou, J.; Song, Z.; Zhu, H.; Li, Y.; Cui, L. All-solid-state Z-scheme AgBr/Bi2CrO6 heterostructure with metallic Ag as a charge transfer bridge for boosted charge transfer and photocatalytic performances. Appl. Surf. Sci. 2024, 654, 159471. [Google Scholar] [CrossRef]
- Tian, L.; Li, J.; Wang, J.; Yang, Z.; Li, Y.; Zhang, L.; Zhang, G. Built-in electric field intensified by SPR effect to drive charge separation over Ag-AgI/Sb2S3 heterojunction for high-efficiency photocatalytic metronidazole mineralization. Sep. Purif. Technol. 2024, 346, 127443. [Google Scholar] [CrossRef]
- Thennarasu, G.; Rajendran, S.; Kalairaj, A.; Rathore, H.S.; Panda, R.C.; Senthilvelan, T. A comprehensive review on the application of semiconductor nanometal oxides photocatalyst for the treatment of wastewater. In Clean Technologies and Environmental Policy; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–22. [Google Scholar]
- Zhang, Y.; Liu, J.; Kang, Y.S.; Zhang, X.L. Silver based photocatalysts in emerging applications. Nanoscale 2022, 14, 11909–11922. [Google Scholar] [CrossRef]
- Yao, Y.; Shen, Q.; Chen, Q.; He, Y.; Jiang, L.; Liu, J.; Li, Y.; Cao, X.; Yang, H. Ag/AgX (X = Cl, Br, or I) nanocomposite loaded on Ag3PO4 tetrapods as a photocatalyst for the degradation of contaminants. ACS Appl. Nano Mater. 2024, 7, 3711–3723. [Google Scholar] [CrossRef]
- Azhar, M. Historical overview and future prospects of photocatalysis. In Graphene-Based Photocatalysts: From Fundamentals to Applications; Springer: Berlin/Heidelberg, Germany, 2024; pp. 47–65. [Google Scholar]
- Nematov, D. Titanium dioxide and photocatalysis: A detailed overview of the synthesis, applications, challenges, advances and prospects for sustainable development. J. Mod. Green Energy 2024, 3, 1–34. [Google Scholar] [CrossRef]
- Zhao, D.; Tang, X.; Liu, P.; Huang, Q.; Li, T.; Ju, L. Recent progress of ion-modified TiO2 for enhanced photocatalytic hydrogen production. Molecules 2024, 29, 2347. [Google Scholar] [CrossRef]
- Xu, F.; Hu, C.; Zhu, D.; Wang, D.; Zhong, Y.; Tang, C.; Zhou, H. One-step hydrothermal synthesis of nanostructured MgBi2O6/TiO2 composites for enhanced hydrogen production. Nanomaterials 2022, 12, 1302. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, C.; Zhu, B.; Zhong, Y.; Zhou, H. Synthesis and Photocatalytic Properties of MgBi2O6 with Ag Additions; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; p. 022022. [Google Scholar]
- Zhong, L.; Hu, C.; Zhuang, J.; Zhong, Y.; Wang, D.; Zhou, H. AgBr/MgBi2O6 heterostructured composites with highly efficient visible-light-driven photocatalytic activity. J. Phys. Chem. Solids 2018, 117, 94–100. [Google Scholar] [CrossRef]
- Sanni, S.; Viljoen, E.; Ofomaja, A. Tailored synthesis of Ag/AgBr nanostructures coupled activated carbon with intimate interface interaction for enhanced photodegradation of tetracycline. Process Saf. Environ. Protect. 2021, 146, 20–34. [Google Scholar] [CrossRef]
- Sanni, S.; Viljoen, E.; Ofomaja, A. Design of ordered Ag/AgBr nanostructures coupled activated carbon with enhanced charge carriers separation efficiency for photodegradation of tetracycline under visible light. J. Mol. Liq. 2020, 299, 112032. [Google Scholar] [CrossRef]
- Liu, L.; Wang, D.; Zhong, Y.; Hu, C. Electronic, optical, mechanical and lattice dynamical properties of MgBi2O6: A first-principles study. Appl. Sci. 2019, 9, 1267. [Google Scholar] [CrossRef]
- Mizoguchi, H.; Bhuvanesh, N.S.; Woodward, P.M. Optical and electrical properties of the wide gap, n-type semiconductors: ZnBi2O6 and MgBi2O6. Chem. Com. 2003, 1084–1085. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, G.; Wang, X.; Zhu, L.; Tang, H. Chemical and photocatalytic oxidative degradation of carbamazepine by using metastable Bi3+ self-doped NaBiO3 nanosheets as a bifunctional material. Appl. Catal. B-Environ. 2017, 202, 528–538. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, F.; Zhu, L.; Wang, N.; Tang, H. Bi3+ self doped NaBiO3 nanosheets: Facile controlled synthesis and enhanced visible light photocatalytic activity. Appl. Catal. B-Environ. 2015, 164, 151–158. [Google Scholar] [CrossRef]
- Lamba, R.; Umar, A.; Mehta, S.K.; Anderson, W.A.; Kansal, S.K. Visible-light-driven photocatalytic properties of self assembled cauliflower-like AgCl/ZnO hierarchical nanostructures. J. Mol. Catal. A Chem. 2015, 408, 189–201. [Google Scholar] [CrossRef]
- Hu, C.; Zhuang, J.; Zhong, L.; Zhong, Y.; Wang, D.; Zhou, H. Significantly enhanced photocatalytic activity of visible light responsive AgBr/Bi2Sn2O7 heterostructured composites. Appl. Surf. Sci. 2017, 426, 1173–1181. [Google Scholar] [CrossRef]
- Zhang, A.; Zhang, L.; Lu, H.; Chen, G.; Liu, Z.; Xiang, J.; Sun, L. Facile synthesis of ternary Ag/AgBr-Ag2CO3 hybrids with enhanced photocatalytic removal of elemental mercury driven by visible light. J. Hazard. Mater. 2016, 314, 78–87. [Google Scholar] [CrossRef]
- Ali, S.; Ismail, P.M.; Khan, M.; Dang, A.; Ali, S.; Zada, A.; Raziq, F.; Khan, I.; Khan, M.S.; Ateeq, M. Charge transfer in TiO2-based photocatalysis: Fundamental mechanisms to material strategies. Nanoscale 2024, 16, 4352–4377. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H.; Ammar, S.H.; Sabit, D.A.; Najim, A.A.; Radeef, A.Y.; Taher, A.G. The latest progress in the design and application of semiconductor photocatalysis systems for degradation of environmental pollutants in wastewater: Mechanism insight and theoretical calculations. Mater. Sci. Semicond. Process 2024, 173, 108153. [Google Scholar] [CrossRef]
- Wojnárovits, L.; Homlok, R.; Kovács, K.; Tegze, A.; Takács, E. Wastewater characterization: Chemical oxygen demand or total organic carbon content measurement? Molecules 2024, 29, 405. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Jiang, Z.; Lai, H.H.; Nicholls, R.J.; Xiao, T.; Jones, M.O.; Edwards, P.P. Unusual reactivity of visible-light-responsive AgBr–BiOBr heterojunction photocatalysts. J. Catal. 2012, 293, 116–125. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H.; Zhang, L.; Yin, H.; Nie, Q. One-pot synthesis of AgBr-Ag-BiOBr nanosheets for efficient visible-light-driven photocatalysis. Mater. Lett. 2022, 323, 132556. [Google Scholar] [CrossRef]
Series | Eg (eV) | CB (eV) | VB (eV) |
---|---|---|---|
MgBi2O6 | 1.66 | 0.78 | 2.44 |
AgBr/MgBi2O6 | 1.72 | - | - |
Ag/AgBr/MgBi2O6 | 1.45 | - | - |
AgBr | 2.60 | 0.01 | 2.61 |
Series | k (min−1) | Pseudo-First-Order Reaction | R2 |
---|---|---|---|
MgBi2O6 | 0.0162 | y = 0.0162x − 0.1002 | 0.9509 |
AgBr/MgBi2O6 | 0.0661 | y = 0.0661x − 0.4071 | 0.9473 |
Ag/AgBr/MgBi2O6 | 0.1223 | y = 0.1223x − 0.8789 | 0.9405 |
AgBr | 0.0102 | y = 0.0102x + 0.1725 | 0.8068 |
Series | Preparation | Degradation Performance | Real Samples | Ref. |
---|---|---|---|---|
AgBr/MgBi2O6 | Hydrothermal, coprecipitation | 0.2 g catalyst/10 ppm MB/94% degradation in 35 min (300 W Xe lamp) | - | [44] |
AgX/MgBi2O6 (X = Cl, Br, I) | Co-precipitation | 0.15 g catalyst/15 ppm MB/99.5% degradation in 20 min (2.5 W white-light LED irradiation) | - | [22] |
Ag/MgBi2O6 | Heat treatment | 0.2 g catalyst/10 ppm MB/98.6% degradation in 120 min (300 W Xe lamp) | - | [43] |
AgBr-BiOBr | Co-precipitation | 0.1 g catalyst/20 ppm RhB/80% degradation in 10 min (300 W Xe lamp) | - | [57] |
AgBr-Ag-BiOBr | Precipitation | 15 mg catalyst/15 ppm RhB/97% degradation in 20 min (300 W Hg lamp) | - | [58] |
Ag-AgBr/ZnWO4 | Hydrothermal, precipitation, sonication | 2 g catalyst/50 ppm AR18/91% degradation in 60 min (500 W Xe lamp) | - | [27] |
Ag/AgBr/Bi2CrO6 | Microwave-assisted hydrothermal, in-situ precipitation, photo-reduction method | 0.1 g catalyst/10 ppm RhB/98.0% degradation in 30 min (250 W Xe lamp) | - | [34] |
Ag/AgBr/MgBi2O6 | Hydrothermal, co-precipitation, photo-reduction | 0.15 g catalyst/15 ppm MB/98.6% degradation in 40 min (2.5 W white-light LED irradiation) | Sea and river water | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.-Y.; Arun, M.K.; Thomas, S.; Wu, M.-Y.; Wu, T.; Lin, Y.-W. Hydrothermal and Co-Precipitation Combined with Photo-Reduced Preparation of Ag/AgBr/MgBi2O6 Composites for Visible Light Degradation Toward Organics. Nanomaterials 2024, 14, 1865. https://doi.org/10.3390/nano14231865
Huang H-Y, Arun MK, Thomas S, Wu M-Y, Wu T, Lin Y-W. Hydrothermal and Co-Precipitation Combined with Photo-Reduced Preparation of Ag/AgBr/MgBi2O6 Composites for Visible Light Degradation Toward Organics. Nanomaterials. 2024; 14(23):1865. https://doi.org/10.3390/nano14231865
Chicago/Turabian StyleHuang, Hsin-Yi, Mudakazhi Kanakkithodi Arun, Sabu Thomas, Mei-Yao Wu, Tsunghsueh Wu, and Yang-Wei Lin. 2024. "Hydrothermal and Co-Precipitation Combined with Photo-Reduced Preparation of Ag/AgBr/MgBi2O6 Composites for Visible Light Degradation Toward Organics" Nanomaterials 14, no. 23: 1865. https://doi.org/10.3390/nano14231865
APA StyleHuang, H. -Y., Arun, M. K., Thomas, S., Wu, M. -Y., Wu, T., & Lin, Y. -W. (2024). Hydrothermal and Co-Precipitation Combined with Photo-Reduced Preparation of Ag/AgBr/MgBi2O6 Composites for Visible Light Degradation Toward Organics. Nanomaterials, 14(23), 1865. https://doi.org/10.3390/nano14231865