Investigation of Buckling Behaviors in Carbon Nanorings Using the Chebyshev–Ritz Method
Abstract
:1. Introduction
2. Theoretical Methods
3. Results and Discussion
3.1. MD Simulations of CNRs Exhibiting Regular Buckled Shapes and Those Without
3.2. Regular Buckled Shape Achieved by Chebyshev–Ritz Method
3.3. Structural Transitions of CNRs Analyzed by Chebyshev–Ritz and MD Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Dai, H.; Hafner, J.H.; Colbert, D.T.; Smalley, R.E.; Tans, S.J.; Dekker, C. Fullerene ‘crop circles’. Nature 1997, 385, 780–781. [Google Scholar] [CrossRef]
- Liu, L.; Liu, F.; Zhao, J. Curved carbon nanotubes: From unique geometries to novel properties and peculiar applications. Nano Res. 2014, 7, 626–657. [Google Scholar] [CrossRef]
- Sarapat, P.; Hill, J.M.; Baowan, D. A review of geometry, construction and modelling for carbon nanotori. Appl. Sci. 2019, 9, 2301. [Google Scholar] [CrossRef]
- Glukhova, O.; Kondrashov, V.; Nevolin, V.; Bobrinetsky, I.; Savostyanov, G.; Slepchenkov, M. Prediction of the stability and electronic properties of carbon nanotori synthesized by a high-voltage pulsed discharge in ethanol vapor. Semiconductors 2016, 50, 502–507. [Google Scholar] [CrossRef]
- Shea, H.; Martel, R.; Avouris, P. Electrical transport in rings of single-wall nanotubes: One-dimensional localization. Phys. Rev. Lett. 2000, 84, 4441. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, T.M.; Shingaya, Y.; Vimalanathan, K.; Nakayama, T.; Raston, C.L. High yielding fabrication of magnetically responsive coiled single-walled carbon nanotube under flow. ACS Appl. Nano Mater. 2019, 2, 5282–5289. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, E.; Zhang, K.; Zhang, S. The Aharonov–Bohm effect in the carbon nanotube ring. RSC Adv. 2015, 5, 45551–45557. [Google Scholar] [CrossRef]
- Reiter, K.; Weigend, F.; Wirz, L.N.; Dimitrova, M.; Sundholm, D. Magnetically induced current densities in toroidal carbon nanotubes. J. Phys. Chem. C 2019, 123, 15354–15365. [Google Scholar] [CrossRef]
- XianYu, Z.-N.; Du, A. Magnetization behavior of a single-walled nanotube ring with surface anisotropy. J. Magn. Magn. Mater. 2019, 485, 265–270. [Google Scholar] [CrossRef]
- Meunier, V.; Lambin, P.; Lucas, A. Atomic and electronic structures of large and small carbon tori. Phys. Rev. B 1998, 57, 14886. [Google Scholar] [CrossRef]
- Girao, E.C.; Souza Filho, A.G.; Meunier, V. Electronic transport properties of carbon nanotoroids. Nanotechnology 2011, 22, 075701. [Google Scholar] [CrossRef] [PubMed]
- Martel, R.; Shea, H.R.; Avouris, P. Rings of single-walled carbon nanotubes. Nature 1999, 398, 299. [Google Scholar] [CrossRef]
- Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Ring closure of carbon nanotubes. Science 2001, 293, 1299–1301. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Jayanthi, C.; Wu, S. Structural and electronic properties of a carbon nanotorus: Effects of delocalized and localized deformations. Phys. Rev. B 2001, 64, 033412. [Google Scholar] [CrossRef]
- Pozrikidis, C. Structure of carbon nanorings. Comput. Mater. Sci. 2008, 43, 943–950. [Google Scholar] [CrossRef]
- Kong, X.Y.; Ding, Y.; Yang, R.; Wang, Z.L. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science 2004, 303, 1348–1351. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Lu, C. Atomistic simulations of formation and stability of carbon nanorings. Phys. Rev. B 2005, 72, 115408. [Google Scholar] [CrossRef]
- Chen, C.; Chang, J.-G.; Ju, S.-P.; Hwang, C.-C. Thermal stability and morphological variation of carbon nanorings of different radii during the temperature elevating process: A molecular dynamics simulation study. J. Nanopart. Res. 2011, 13, 1995–2006. [Google Scholar] [CrossRef]
- Ajori, S.; Ansari, R.; Hassani, R.; Haghighi, S. Structural stability and buckling analysis of a series of carbon nanotorus using molecular dynamics simulations. J. Mol. Model. 2018, 24, 263. [Google Scholar] [CrossRef]
- Feng, C.; Liew, K.M. Energetics and structures of carbon nanorings. Carbon 2009, 47, 1664–1669. [Google Scholar] [CrossRef]
- Han, J. Energetics and structures of fullerene crop circles. Chem. Phys. Lett. 1998, 282, 187–191. [Google Scholar] [CrossRef]
- Huhtala, M.; Kuronen, A.; Kaski, K. Carbon nanotube structures: Molecular dynamics simulation at realistic limit. Comput. Phys. Commun. 2002, 146, 30–37. [Google Scholar] [CrossRef]
- Huhtala, M.; Kuronen, A.; Kaski, K. Computational studies of carbon nanotube structures. Comput. Phys. Commun. 2002, 147, 91–96. [Google Scholar] [CrossRef]
- Silveira, J.F.; Muniz, A.R. Chain- and chainmail-like nanostructures from carbon nanotube rings. Comput. Mater. Sci. 2019, 161, 76–82. [Google Scholar] [CrossRef]
- Feng, C.; Liew, K.M. A molecular mechanics analysis of the buckling behavior of carbon nanorings under tension. Carbon 2009, 47, 3508–3514. [Google Scholar] [CrossRef]
- Chen, N.; Lusk, M.T.; Van Duin, A.C.; Goddard, W.A., III. Mechanical properties of connected carbon nanorings via molecular dynamics simulation. Phys. Rev. B 2005, 72, 085416. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Theory of elasticity: Part 1. In Course of Theoretical Physics, 3rd ed.; Elsevier Ltd.: New York, NY, USA, 1986; Volume 7. [Google Scholar]
- Petyt, M. Introduction to Finite Element Vibration Analysis, 3rd ed.; Cambridge University Press: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Timoshenko, S.; Goodier, J.N. Theory of Elasticity, 3rd ed.; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Zhou, D. Three-Dimensional Vibration Analysis of Structural Elements Using Chebyshev-Ritz Method, 1st ed.; Science Press: Beijing, China, 2007. [Google Scholar]
- Zhou, D.; Au, F.; Lo, S.; Cheung, Y. Three-dimensional vibration analysis of a torus with circular cross section. J. Acoust. Soc. Am. 2002, 112, 2831–2839. [Google Scholar] [CrossRef]
- Zhou, D.; Cheung, Y.; Lo, S. 3-D vibration analysis of circular rings with sectorial cross-sections. J. Sound. Vib. 2010, 329, 1523–1535. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, W.; McGee, O. On the three-dimensional vibrations of a hollow elastic torus of annular cross-section. Arch. Appl. Mech. 2011, 81, 473–487. [Google Scholar] [CrossRef]
- Wang, Q.; Liew, K.M.; Duan, W. Modeling of the mechanical instability of carbon nanotubes. Carbon 2008, 46, 285–290. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Chen, X.; Cao, G. A structural mechanics study of single-walled carbon nanotubes generalized from atomistic simulation. Nanotechnology 2006, 17, 1004. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; He, X. Young’s moduli of functionalized single-wall carbon nanotubes under tensile loading. Compos. Sci. Technol. 2009, 69, 169–175. [Google Scholar] [CrossRef]
- Kulathunga, D.; Ang, K.; Reddy, J. Accurate modeling of buckling of single-and double-walled carbon nanotubes based on shell theories. J. Phys. Condens. Matter 2009, 21, 435301. [Google Scholar] [CrossRef]
- Kulathunga, D.; Ang, K.; Reddy, J. Molecular dynamics analysis on buckling of defective carbon nanotubes. J. Phys. Condens. Matter 2010, 22, 345301. [Google Scholar] [CrossRef]
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998. [Google Scholar]
- Yakobson, B.I.; Avouris, P. Mechanical properties of carbon nanotubes. In Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Springer: Berlin/Heidelberg, Germany, 2001; pp. 287–327. [Google Scholar] [CrossRef]
- Yakobson, B.I.; Brabec, C.; Bernholc, J. Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 1996, 76, 2511. [Google Scholar] [CrossRef]
- Krishna, K.S.; Eswaramoorthy, M. Novel synthesis of carbon nanorings and their characterization. Chem. Phys. Lett. 2007, 433, 327–330. [Google Scholar] [CrossRef]
- Lourie, O.; Cox, D.; Wagner, H. Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 1998, 81, 1638. [Google Scholar] [CrossRef]
- Poncharal, P.; Wang, Z.; Ugarte, D.; De Heer, W.A. Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 1999, 283, 1513–1516. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Ebbesen, T.W.; Gibson, J.M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680. [Google Scholar] [CrossRef]
- Krishnan, A.; Dujardin, E.; Ebbesen, T.W.; Yianilos, P.N.; Treacy, M.M.J. Young’s modulus of single-walled nanotubes. Phys. Rev. B 1998, 58, 14013–14019. [Google Scholar] [CrossRef]
- Lu, J.P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 1997, 79, 1297–1300. [Google Scholar] [CrossRef]
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Kuang, G.; Tian, H.; Shao, Z.; Dong, N.; Lin, T.; Huang, L. Investigation of Buckling Behaviors in Carbon Nanorings Using the Chebyshev–Ritz Method. Nanomaterials 2024, 14, 1868. https://doi.org/10.3390/nano14231868
Wang X, Kuang G, Tian H, Shao Z, Dong N, Lin T, Huang L. Investigation of Buckling Behaviors in Carbon Nanorings Using the Chebyshev–Ritz Method. Nanomaterials. 2024; 14(23):1868. https://doi.org/10.3390/nano14231868
Chicago/Turabian StyleWang, Xiaobo, Guowen Kuang, Hongmei Tian, Zhibin Shao, Ning Dong, Tao Lin, and Li Huang. 2024. "Investigation of Buckling Behaviors in Carbon Nanorings Using the Chebyshev–Ritz Method" Nanomaterials 14, no. 23: 1868. https://doi.org/10.3390/nano14231868
APA StyleWang, X., Kuang, G., Tian, H., Shao, Z., Dong, N., Lin, T., & Huang, L. (2024). Investigation of Buckling Behaviors in Carbon Nanorings Using the Chebyshev–Ritz Method. Nanomaterials, 14(23), 1868. https://doi.org/10.3390/nano14231868