Syngas from Reforming Methane and Carbon Dioxide on Ni@M(SiO2 and CeO2)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Catalysts
2.2. Test of Catalysts
3. Experimental Procedure
3.1. Catalyst Synthesis
- (1)
- Synthesis of Ni nanoparticles [33]
- (2)
- Synthesis of Ni@CeO2(SiO2) [34]
- (3)
- Synthesis of Ni-BTC [35]
- (4)
3.2. Characterization of Catalyst
3.3. Evaluation of Catalytic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, Y.; Zhang, Y.; Li, H.; Fei, M.; Zhang, H.; Santoro, J.; Wang, D. Methane Carboxylation Using Electrochemically Activated Carbon Dioxide. Angew. Chem. Int. Ed. 2023, 62, e202305568. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chu, W.; Huang, L.; Zhang, T. Effects of Ce/Zr ratio on the structure and performances of Co-Ce1−xZrxO2 catalysts for carbon dioxide reforming of methane. J. Nat. Gas Chem. 2010, 19, 117–122. [Google Scholar] [CrossRef]
- Cheng, K.; Gu, B.; Liu, X.; Kang, J.; Zhang, Q.; Wang, Y. Direct and Highly Selective Conversion of Synthesis Gas to Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon–Carbon Coupling. Angew. Chem. Int. Ed. 2016, 55, 4725–4728. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.; Li, J.; Pan, X. Selective conversion of syngas tolight olefins. Science 2016, 351, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Murata, D.; Sumi, T.; Kokuryo, S.; Kitamura, H.; Tsubota, S.; Miyake, K.; Uchida, Y.; Miyamoto, M.; Nishiyama, N. Dry Reforming of Methane with Suppressed Carbon Deposition over Cr- and Ni-Loaded Dealuminated β Zeolites. Energy Fuels 2023, 37, 18945–18951. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, A.; Kubů, M.; Shamzhy, M.; Čejka, J. Highly selective reduction of biomass-derived furfural by tailoring the microenvironment of Rh@BEA catalysts. Catal. Today 2021, 390, 295–305. [Google Scholar] [CrossRef]
- Li, D.; Li, R.; Lu, M.; Lin, X.; Zhan, Y.; Jiang, L. Carbon dioxide reforming of methane over Ru catalysts supported on Mg-Al oxides: A highly dispersed and stable Ru/Mg(Al)O catalyst. Appl. Catal. Environ. 2017, 200, 566–577. [Google Scholar] [CrossRef]
- Hu, Y.H. Solid-solution catalysts for CO2 reforming of methane. Catal. Today 2009, 148, 206–211. [Google Scholar] [CrossRef]
- Luengnaruemitchai, A.; Kaengsilalai, A. Activity of different zeolite-supported Ni catalysts for methane reforming with carbon dioxide. Chem. Eng. J. 2008, 144, 96–102. [Google Scholar] [CrossRef]
- Kaydouh, M.N.; El Hassan, N.; Davidson, A.; Casale, S.; El Zakhem, H.; Massiani, P. Highly active and stable Ni/SBA-15 catalysts prepared by a “two solvents” method for dry reforming of methane. Microporous Mesoporous Mater. 2016, 220, 99–109. [Google Scholar] [CrossRef]
- Taherian, Z.; Gharahshiran, V.S.; Fazlikhani, F.; Yousefpour, M. Catalytic performance of Samarium-modified Ni catalysts over Al2O3–CaO support for dry reforming of methane. Int. J. Hydrogen Energy 2021, 46, 7254–7262. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Y.; Chen, M.; Xie, X.; Li, C.; Wang, J.; Yuan, L. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni-Co catalysts. Appl. Catal. Environ. 2023, 322, 122088. [Google Scholar] [CrossRef]
- Song, Y.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B.A.; Jamal, A.; Moon, D.; et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 2020, 367, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, J.; Liu, H.; He, D. CO2 reforming of methane to syngas at high pressure over bi-component Ni-Co catalyst: The anti-carbon deposition and stability of catalyst. Fuel 2019, 235, 868–877. [Google Scholar] [CrossRef]
- Singha, R.K.; Yadav, A.; Agrawal, A.; Shukla, A.; Adak, S.; Sasaki, T.; Bal, R. Synthesis of highly coke resistant Ni nanoparticles supported MgO/ZnO catalyst for reforming of methane with carbon dioxide. Appl. Catal. Environ. 2016, 191, 165–178. [Google Scholar] [CrossRef]
- Xiang, X.; Zhao, H.; Yang, J.; Zhao, J.; Yan, L.; Song, H.; Chou, L. Nickel based mesoporous silica-ceria-zirconia composite for carbon dioxide reforming of methane. Appl. Catal. Gen. 2016, 520, 140–150. [Google Scholar] [CrossRef]
- Sutthiumporn, K.; Kawi, S. Promotional effect of alkaline earth over Ni–La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression. Int. J. Hydrogen Energy 2011, 36, 14435–14446. [Google Scholar] [CrossRef]
- Koo, K.Y.; Lee, S.-h.; Jung, U.H.; Roh, H.-S.; Yoon, W.L. Syngas production via combined steam and carbon dioxide reforming of methane over Ni–Ce/MgAl2O4 catalysts with enhanced coke resistance. Fuel Process. Technol. 2014, 119, 151–157. [Google Scholar] [CrossRef]
- Son, I.H.; Lee, S.J.; Song, I.Y.; Jeon, W.S.; Jung, I.; Yun, D.J.; Jeong, D.-W.; Shim, J.-O.; Jang, W.-J.; Roh, H.-S. Study on coke formation over Ni/γ-Al2O3, Co-Ni/γ-Al2O3, and Mg-Co-Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane. Fuel 2014, 136, 194–200. [Google Scholar] [CrossRef]
- Corthals, S.; Van Nederkassel, J.; De Winne, H.; Geboers, J.; Jacobs, P.; Sels, B. Design of active and stable NiCeO2ZrO2MgAl2O4 dry reforming catalysts. Appl. Catal. Environ. 2011, 105, 263–275. [Google Scholar] [CrossRef]
- Wang, N.; Shen, K.; Huang, L.; Yu, X.; Qian, W.; Chu, W. Facile Route for Synthesizing Ordered Mesoporous Ni–Ce–Al Oxide Materials and Their Catalytic Performance for Methane Dry Reforming to Hydrogen and Syngas. ACS Catal. 2013, 3, 1638–1651. [Google Scholar] [CrossRef]
- Dębek, R.; Radlik, M.; Motak, M.; Galvez, M.E.; Turek, W.; Da Costa, P.; Grzybek, T. Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature—On the effect of basicity. Catal. Today 2015, 257, 59–65. [Google Scholar] [CrossRef]
- Park, J.C.; Bang, J.U.; Lee, J.; Ko, C.H.; Song, H. Ni@SiO2 yolk-shell nanoreactor catalysts: High temperature stability and recyclability. J. Mater. Chem. 2010, 20, 1239–1246. [Google Scholar] [CrossRef]
- Wieder, N.L.; Cargnello, M.; Bakhmutsky, K.; Montini, T.; Fornasiero, P.; Gorte, R.J. Study of the Water-Gas-Shift Reaction on Pd@CeO2/Al2O3 Core−Shell Catalysts. J. Phys. Chem. 2011, 115, 915–919. [Google Scholar] [CrossRef]
- Kang, K.-M.; Kim, H.-W.; Shim, I.-W.; Kwak, H.-Y. Catalytic test of supported Ni catalysts with core/shell structure for dry reforming of methane. Fuel Process. Technol. 2011, 92, 1236–1243. [Google Scholar] [CrossRef]
- Li, L.; He, S.; Song, Y.; Zhao, J.; Ji, W.; Au, C.-T. Fine-tunable Ni@porous silica core–shell nanocatalysts: Synthesis, characterization, and catalytic properties in partial oxidation of methane to syngas. J. Catal. 2012, 288, 54–64. [Google Scholar] [CrossRef]
- Adijanto, L.; Bennett, D.A.; Chen, C.; Yu, A.S.; Cargnello, M.; Fornasiero, P.; Gorte, R.J.; Vohs, J.M. Exceptional Thermal Stability of Pd@CeO2 Core–Shell Catalyst Nanostructures Grafted onto an Oxide Surface. Nano Lett. 2013, 13, 2252–2257. [Google Scholar] [CrossRef]
- Adijanto, L.; Sampath, A.; Yu, A.S.; Cargnello, M.; Fornasiero, P.; Gorte, R.J.; Vohs, J.M. Synthesis and Stability of Pd@CeO2 Core–Shell Catalyst Films in Solid Oxide Fuel Cell Anodes. ACS Catal. 2013, 3, 1801–1809. [Google Scholar] [CrossRef]
- Aramouni, N.A.K.; Zeaiter, J.; Kwapinski, W.; Ahmad, M.N. Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation. Energy Convers. Manag. 2017, 150, 614–622. [Google Scholar] [CrossRef]
- Du, X.; Zhang, D.; Shi, L.; Gao, R.; Zhang, J. Morphology Dependence of Catalytic Properties of Ni/CeO2 Nanostructures for Carbon Dioxide Reforming of Methane. J. Phys. Chem. C 2012, 116, 10009–10016. [Google Scholar] [CrossRef]
- Guo, Y.; Tian, L.; Yan, W.; Qi, R.; Tu, W.; Wang, Z.-J. CeO2-Promoted Ni/SiO2 Catalysts for Carbon Dioxide Reforming of Methane: The Effect of Introduction Methodologies. Catal. Lett. 2021, 151, 2144–2152. [Google Scholar] [CrossRef]
- Das, S.; Ashok, J.; Bian, Z.; Dewangan, N.; Wai, M.H.; Du, Y.; Borgna, A.; Hidajat, K.; Kawi, S. Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights. Appl. Catal. Environ. 2018, 230, 220–236. [Google Scholar] [CrossRef]
- Carenco, S.; Boissière, C.; Nicole, L.; Sanchez, C.; Le Floch, P.; Mézailles, N. Controlled Design of Size-Tunable Monodisperse Nickel Nanoparticles. Chem. Mater. 2010, 22, 1340–1349. [Google Scholar] [CrossRef]
- Cargnello, M.; Montini, T.; Polizzi, S.; Wieder, N.L.; Gorte, R.J.; Graziani, M.; Fornasiero, P. Novel embedded Pd@CeO2 catalysts: A way to active and stable catalysts. Dalton Trans. 2010, 39, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
- Saheli, S.; Rezvani, A. A novel coordination polymer of Ni(II) based on 1,3,5-benzenetricarboxylic acid synthesis, characterization, crystal structure, thermal study, and luminescent properties. J. Mol. Struct. 2017, 1127, 583–589. [Google Scholar] [CrossRef]
- Huang, X.; Yan, S.; Deng, D.; Zhang, L.; Liu, R.; Lv, Y. Novel Strategy for Engineering the Metal-Oxide@MOF Core@Shell Architecture and Its Applications in Cataluminescence Sensing. ACS Appl. Mater. Interfaces 2021, 13, 3471–3480. [Google Scholar] [CrossRef]
- Wang, X.; Geng, Q.; Shi, G.; Zhang, Y.; Li, D. MOF-derived yolk–shell Ni/C architectures assembled with Ni@C core–shell nanoparticles for lightweight microwave absorbents. CrystEngComm 2020, 22, 6796–6804. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, D.; Li, J.; Guo, X.; Lu, X.; Ding, H.; He, R. Syngas from Reforming Methane and Carbon Dioxide on Ni@M(SiO2 and CeO2). Nanomaterials 2024, 14, 1877. https://doi.org/10.3390/nano14231877
Hua D, Li J, Guo X, Lu X, Ding H, He R. Syngas from Reforming Methane and Carbon Dioxide on Ni@M(SiO2 and CeO2). Nanomaterials. 2024; 14(23):1877. https://doi.org/10.3390/nano14231877
Chicago/Turabian StyleHua, Derun, Jian Li, Xiaowen Guo, Xinning Lu, Hao Ding, and Rengui He. 2024. "Syngas from Reforming Methane and Carbon Dioxide on Ni@M(SiO2 and CeO2)" Nanomaterials 14, no. 23: 1877. https://doi.org/10.3390/nano14231877
APA StyleHua, D., Li, J., Guo, X., Lu, X., Ding, H., & He, R. (2024). Syngas from Reforming Methane and Carbon Dioxide on Ni@M(SiO2 and CeO2). Nanomaterials, 14(23), 1877. https://doi.org/10.3390/nano14231877