From Chains to Arrays: Substrate-Mediated Self-Assembly of Diboron Molecules
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. B2Cat2 Self-Assembly on Au(111)
3.2. B2Cat2 Self-Assembly on Bilayer Graphene (BLG)
3.3. Electronic Structure Analysis of Molecule–Substrate Interactions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, P.; Yan, F. Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 2012, 24, 34–51. [Google Scholar] [CrossRef]
- Casalini, S.; Bortolotti, C.A.; Leonardi, F.; Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 2017, 46, 40–71. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Yip, H.L.; Huang, F.; Jen, A.K.Y. Interface engineering for organic electronics. Adv. Funct. Mater. 2010, 20, 1371–1388. [Google Scholar] [CrossRef]
- Yang, J.; Yan, D.; Jones, T.S. Molecular template growth and its applications in organic electronics and optoelectronics. Chem. Rev. 2015, 115, 5570–5603. [Google Scholar] [CrossRef]
- Yokoyama, D. Molecular orientation in small-molecule organic light-emitting diodes. J. Mater. Chem. 2011, 21, 19187–19202. [Google Scholar] [CrossRef]
- Barth, J.V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 2007, 58, 375–407. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.-E.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Geim, A.K.; MacDonald, A.H. Graphene: Exploring carbon flatland. Phys. Today 2007, 60, 35–41. [Google Scholar] [CrossRef]
- Ajayan, P.; Kim, P.; Banerjee, K. Two-dimensional van der Waals materials. Phys. Today 2016, 69, 38–44. [Google Scholar] [CrossRef]
- Akinwande, D.; Huyghebaert, C.; Wang, C.-H.; Serna, M.I.; Goossens, S.; Li, L.-J.; Wong, H.-S.P.; Koppens, F.H. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, W.; Mao, J.; Zhang, H.; Jiang, Y.; Zhou, H.; Yang, K.; Gao, H. Densely packed overlayer of iron phthalocyanine molecules grown on single-layer graphene. Chin. Chem. Lett. 2018, 29, 183–186. [Google Scholar] [CrossRef]
- Yang, K.; Xiao, W.; Jiang, Y.; Zhang, H.; Liu, L.; Mao, J.; Zhou, H.; Du, S.; Gao, H.-J. Molecule–substrate coupling between metal phthalocyanines and epitaxial graphene grown on Ru(0001) and Pt(111). J. Phys. Chem. C 2012, 116, 14052–14056. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Ali, H.A.; Srebnik, M. Recent chemistry of the diboron compounds. Adv. Organomet. Chem. 2004, 51, 193–250. [Google Scholar]
- AI, M.I. Diboron (4) Compounds: From Structural Curiosity to Synthetic Workhorse. Chem. Rev. 2016, 116, 9091–9161. [Google Scholar]
- Geng, S.; Shi, C.; Guo, B.; Hou, H.; Liu, Z.; Feng, Z. Recent Progress in Transition-Metal-Catalyzed Reductive Cross-Coupling Reactions Using Diboron Reagents as Reductants. ACS Catal. 2023, 13, 15469–15480. [Google Scholar] [CrossRef]
- Stredansky, M.; Sala, A.; Fontanot, T.; Costantini, R.; Africh, C.; Comelli, G.; Floreano, L.; Morgante, A.; Cossaro, A. On-surface synthesis of a 2D boroxine framework: A route to a novel 2D material? Chem. Commun. 2018, 54, 3971–3973. [Google Scholar] [CrossRef]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Chaoliang, T.; Xiehong, C.; Xue-Jun, W.; Qiyuan, H.; Jian, Y.; Xiao, Z.; Junze, C.; Wei, Z.; Shikui, H.; Gwang-Hyeon, N. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331. [Google Scholar]
- Zhang, T.; Li, R.; Hao, X.; Zhang, Q.; Yang, H.; Hou, Y.; Hou, B.; Jia, L.; Jiang, K.; Zhang, Y. Ullmann-Like Covalent Bond Coupling without Participation of Metal Atoms. ACS Nano 2023, 17, 4387–4395. [Google Scholar] [CrossRef]
- Hou, B.; Zhang, T.; Wang, T.; Ji, H.; Yang, H.; Jia, L.; Han, X.; Qiao, J.; Zhang, Y.; Liu, L. Atomic tracking of thermally-driven structural evolution in 2D crystals: Case of NbSe2. InfoMat 2024, 6, e12501. [Google Scholar] [CrossRef]
- Toffoli, D.; Grazioli, C.; Monti, M.; Stener, M.; Totani, R.; Richter, R.; Schio, L.; Fronzoni, G.; Cossaro, A. Revealing the electronic properties of the B–B bond: The bis-catecholato diboron molecule. Phys. Chem. Chem. Phys. 2021, 23, 23517–23525. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.; Zhao, H.; Lin, Z.; Marder, T.B. Understanding the higher reactivity of B2cat2 versus B2pin2 in copper (I)-catalyzed alkene diboration reactions. Organometallics 2008, 27, 1178–1186. [Google Scholar] [CrossRef]
- Shtepliuk, I.; Khranovskyy, V.; Yakimova, R. Combining graphene with silicon carbide: Synthesis and properties—A review. Semicond. Sci. Technol. 2016, 31, 113004. [Google Scholar] [CrossRef]
- Riedl, C.; Coletti, C.; Starke, U. Structural and electronic properties of epitaxial graphene on SiC (0001): A review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D Appl. Phys. 2010, 43, 374009. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phy. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phy. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Liu, L.; Yang, K.; Xiao, W.; Jiang, Y.; Song, B.; Du, S.; Gao, H.-J. Selective adsorption of metal-phthalocyanine on Au(111) surface with hydrogen atoms. Appl. Phys. Lett. 2013, 103, 023110. [Google Scholar] [CrossRef]
- Tao, L.; Zhang, Y.Y.; Du, S. Structures and electronic properties of functional molecules on metal substrates: From single molecule to self-assemblies. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1591. [Google Scholar] [CrossRef]
- Edmondson, M.; Saywell, A. Molecular Diffusion and Self-Assembly: Quantifying the Influence of Substrate hcp and fcc Atomic Stacking. Nano Lett. 2022, 22, 8210–8215. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hush, N.S.; Reimers, J.R. Simulation of the Au(111)-(22×√3) surface reconstruction. Phys. Rev. B 2007, 75, 233416. [Google Scholar] [CrossRef]
- Pawlak, R.; Meier, T.; Renaud, N.; Kisiel, M.; Hinaut, A.; Glatzel, T.; Sordes, D.; Durand, C.; Soe, W.-H.; Baratoff, A. Design and characterization of an electrically powered single molecule on gold. ACS Nano 2017, 11, 9930–9940. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Cheng, J.; Zhang, Y.; Sun, H.; Zhang, J.; Zhang, X.; Jin, Q. Herringbone Reconstruction-Mediated assembly of 2-(Hydroxymethyl) benzimidazole molecules on Au(111) studied by scanning tunneling microscope. Chem. Phys. Lett. 2022, 803, 139799. [Google Scholar] [CrossRef]
- Cirera, B.; Trukhina, O.; Björk, J.; Bottari, G.; Rodriguez-Fernandez, J.; Martin-Jimenez, A.; Islyaikin, M.K.; Otero, R.; Gallego, J.M.; Miranda, R. Long-range orientational self-assembly, spatially controlled deprotonation, and off-centered metalation of an expanded porphyrin. J. Am. Chem. Soc. 2017, 139, 14129–14136. [Google Scholar] [CrossRef]
- Chen, T.W.M.; Tanaka, Y.; Kametani, Y.; Cheng, K.Y.; Lin, C.H.; Lin, Y.R.; Hsu, T.R.; Chen, Z.; Hao, J.; Mori, S. Spontaneous Assembly and Three-Dimensional Stacking of Antiaromatic 5, 15-Dioxaporphyrin on HOPG. Angew. Chem. Int. Ed. 2022, 61, e202212726. [Google Scholar] [CrossRef]
- Bonnell, D. Scanning Probe Microscopy and Spectroscopy: Theory, Techniques, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Duhm, S.; Gerlach, A.; Salzmann, I.; Bröker, B.; Johnson, R.; Schreiber, F.; Koch, N. PTCDA on Au(111), Ag(111) and Cu(111): Correlation of interface charge transfer to bonding distance. Org. Electron. 2008, 9, 111–118. [Google Scholar] [CrossRef]
- Kilian, L.; Hauschild, A.; Temirov, R.; Soubatch, S.; Schöll, A.; Bendounan, A.; Reinert, F.; Lee, T.-L.; Tautz, F.; Sokolowski, M. Role of Intermolecular Interactions on the Electronic and Geometric Structure of a Large π-Conjugated Molecule Adsorbed on a Metal Surface. Phys. Rev. Lett. 2008, 100, 136103. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Yang, H.; Niu, M.; Wang, T.; Ji, H.; Brumboiu, I.E.; Grazioli, C.; Guarnaccio, A.; Cossaro, A.; Li, Y.; et al. From Chains to Arrays: Substrate-Mediated Self-Assembly of Diboron Molecules. Nanomaterials 2024, 14, 1952. https://doi.org/10.3390/nano14231952
Hao X, Yang H, Niu M, Wang T, Ji H, Brumboiu IE, Grazioli C, Guarnaccio A, Cossaro A, Li Y, et al. From Chains to Arrays: Substrate-Mediated Self-Assembly of Diboron Molecules. Nanomaterials. 2024; 14(23):1952. https://doi.org/10.3390/nano14231952
Chicago/Turabian StyleHao, Xiaoyu, Huixia Yang, Mengmeng Niu, Tingting Wang, Hongyan Ji, Iulia Emilia Brumboiu, Cesare Grazioli, Ambra Guarnaccio, Albano Cossaro, Yan Li, and et al. 2024. "From Chains to Arrays: Substrate-Mediated Self-Assembly of Diboron Molecules" Nanomaterials 14, no. 23: 1952. https://doi.org/10.3390/nano14231952
APA StyleHao, X., Yang, H., Niu, M., Wang, T., Ji, H., Brumboiu, I. E., Grazioli, C., Guarnaccio, A., Cossaro, A., Li, Y., Qiao, J., Zhang, Q., Liu, L., Zhang, T., & Wang, Y. (2024). From Chains to Arrays: Substrate-Mediated Self-Assembly of Diboron Molecules. Nanomaterials, 14(23), 1952. https://doi.org/10.3390/nano14231952