Broadband-Tunable Vanadium Dioxide (VO2)-Based Linear Optical Cavity Sensor
Abstract
:1. Introduction
2. Materials & Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, B. Review of the present status of optical fiber sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Dakin, J.; Culshaw, B. Optical Fiber Sensors: Principles and Components; Artech House: Boston, MA, USA, 1988; Volume 1. [Google Scholar]
- Ayaz, R.M.A.; Koucheh, A.B.; Sendur, K. Sensitivity of a tapered fiber refractive index sensor at diameters comparable to wavelength. Optik 2022, 265, 169417. [Google Scholar]
- Joe, H.E.; Yun, H.; Jo, S.H.; Jun, M.B.; Min, B.K. A review on optical fiber sensors for environmental monitoring. Int. J. Precis. Eng. Manuf. Green Technol. 2018, 5, 173–191. [Google Scholar]
- Garcia, Y.R.; Corres, J.M.; Goicoechea, J. Vibration detection using optical fiber sensors. J. Sens. 2010, 936487. [Google Scholar] [CrossRef]
- Tseng, S.M.; Chen, C.L. Side-polished fibers. Appl. Opt. 1992, 31, 3438–3447. [Google Scholar]
- Yun, B.; Chen, N.; Cui, Y. Highly sensitive liquid-level sensor based on etched fiber Bragg grating. IEEE Photon. Technol. Lett. 2007, 19, 1747–1749. [Google Scholar]
- Li, Y.; Wang, X.; Bao, X. Sensitive acoustic vibration sensor using single-mode fiber tapers. Appl. Opt. 2011, 50, 1873–1878. [Google Scholar] [CrossRef]
- Duduś, A.; Blue, R.; Uttamchandani, D. Comparative study of microfiber and side-polished optical fiber sensors for refractometry in microfluidics. IEEE Sens. J. 2013, 13, 1594–1601. [Google Scholar] [CrossRef]
- Punjabi, N.; Satija, J.; Mukherji, S. Evanescent wave absorption based fiber-optic sensor-cascading of bend and tapered geometry for enhanced sensitivity. In Sensing Technology: Current Status and Future Trends III; Springer: Berlin/Heidelberg, Germany, 2015; pp. 25–45. [Google Scholar]
- Armani, D.; Kippenberg, T.; Spillane, S.; Vahala, K. Ultra-high-Q toroid microcavity on a chip. Nature 2003, 421, 925–928. [Google Scholar] [CrossRef]
- Lefèvre-Seguin, V. Whispering-gallery mode lasers with doped silica microspheres. Opt. Mater. 1999, 11, 153–165. [Google Scholar] [CrossRef]
- Gorodetsky, M.L.; Grudinin, I.S. The measurement of thermo-refractive noise in microspheres. In Proceedings of the Laser Resonators and Beam Control VI, SPIE, San Jose, CA, USA, 28–30 January 2003; Volume 4969, pp. 215–226. [Google Scholar]
- Moille, G.; Chang, L.; Xie, W.; Rao, A.; Lu, X.; Davanço, M.; Bowers, J.E.; Srinivasan, K. Dissipative Kerr Solitons: Dissipative Kerr Solitons in a III-V Microresonator (Laser Photonics Rev. 14 (8)/2020). Laser Photon. Rev. 2020, 14, 2070043. [Google Scholar] [CrossRef]
- Ayaz, R.M.A.; Uysalli, Y.; Morova, B.; Kiraz, A. Linear cavity tapered fiber sensor using amplified phase-shift cavity ring-down spectroscopy. J. Opt. Soc. Am. B 2021, 38, 1756–1762. [Google Scholar] [CrossRef]
- Waechter, H.; Litman, J.; Cheung, A.H.; Barnes, J.A.; Loock, H.P. Chemical sensing using fiber cavity ring-down spectroscopy. Sensors 2010, 10, 1716–1742. [Google Scholar] [CrossRef] [PubMed]
- Notomi, M.; Shinya, A.; Mitsugi, S.; Kuramochi, E.; Ryu, H. Waveguides, resonators and their coupled elements in photonic crystal slabs. Opt. Express 2004, 12, 1551–1561. [Google Scholar] [PubMed]
- Xu, Q.; Manipatruni, S.; Schmidt, B.; Shakya, J.; Lipson, M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express 2007, 15, 430–436. [Google Scholar] [CrossRef]
- Kuo, J.B.; Lin, S.C. Low-Voltage SOI CMOS VLSI Devices and Circuits; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Chuang, C.T.; Lu, P.F.; Anderson, C.J. SOI for digital CMOS VLSI: Design considerations and advances. Proc. IEEE 1998, 86, 689–720. [Google Scholar] [CrossRef]
- Rahimi, E.; Şendur, K. Temperature-driven switchable-beam Yagi-Uda antenna using VO2 semiconductor-metal phase transitions. Opt. Commun. 2017, 392, 109–113. [Google Scholar]
- Rahimi, E.; Şendur, K. Thermally controlled femtosecond pulse shaping using metasurface based optical filters. Nanophotonics 2018, 7, 659–668. [Google Scholar] [CrossRef]
- Fang, Z.; Zheng, J.; Saxena, A.; Whitehead, J.; Chen, Y.; Majumdar, A. Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material. Adv. Opt. Mater. 2021, 9, 2002049. [Google Scholar] [CrossRef]
- Sarangan, A.; Duran, J.; Vasilyev, V.; Limberopoulos, N.; Vitebskiy, I.; Anisimov, I. Broadband reflective optical limiter using GST phase change material. IEEE Photon. J. 2018, 10, 1–9. [Google Scholar]
- Jeyaselvan, V.; Pal, A.; Kumar, P.A.; Selvaraja, S.K. Thermally-induced optical modulation in a vanadium dioxide-on-silicon waveguide. OSA Contin. 2020, 3, 132–142. [Google Scholar] [CrossRef]
- Lu, S.; Hou, L.; Gan, F. Preparation and optical properties of phase-change VO2 thin films. J. Mater. Sci. 1993, 28, 2169–2177. [Google Scholar]
- Rahimi, E.; Koucheh, A.B.; Sendur, K. Temperature assisted reflection control using VO2/Si core-shell nanoparticles. Opt. Mater. Express 2022, 12, 2974–2981. [Google Scholar]
- Ryckman, J.D.; Diez-Blanco, V.; Nag, J.; Marvel, R.E.; Choi, B.; Haglund, R.F.; Weiss, S.M. Photothermal optical modulation of ultra-compact hybrid Si-VO2 ring resonators. Opt. Express 2012, 20, 13215–13225. [Google Scholar] [CrossRef]
- Cavalleri, A.; Tóth, C.; Siders, C.W.; Squier, J.; Ráksi, F.; Forget, P.; Kieffer, J. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 2001, 87, 237401. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, X.; Ko, C.; Yang, Z.; Mouli, C.; Ramanathan, S. Voltage-triggered ultrafast phase transition in vanadium dioxide switches. IEEE Electron Device Lett. 2013, 34, 220–222. [Google Scholar] [CrossRef]
- Uslu, M.E.; Misirlioglu, I.B.; Sendur, K. Selective IR response of highly textured phase change VO2 nanostructures obtained via oxidation of electron beam deposited metallic V films. Opt. Mater. Express 2018, 8, 2035–2049. [Google Scholar] [CrossRef]
- Miller, K.J.; Hallman, K.A.; Haglund, R.F.; Weiss, S.M. Silicon waveguide optical switch with embedded phase change material. Opt. Express 2017, 25, 26527–26536. [Google Scholar]
- Joushaghani, A.; Jeong, J.; Paradis, S.; Alain, D.; Aitchison, J.S.; Poon, J.K. Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors. Opt. Express 2015, 23, 3657–3668. [Google Scholar] [CrossRef]
- Butakov, N.A.; Knight, M.W.; Lewi, T.; Iyer, P.P.; Higgs, D.; Chorsi, H.T.; Trastoy, J.; Del Valle Granda, J.; Valmianski, I.; Urban, C.; et al. Broadband electrically tunable dielectric resonators using metal–insulator transitions. ACS Photon. 2018, 5, 4056–4060. [Google Scholar]
- Shu, S.; Li, Z.; Li, Y.Y. Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime. Opt. Express 2013, 21, 25307–25315. [Google Scholar] [CrossRef]
- Born, N.; Crunteanu, A.; Humbert, G.; Bessaudou, A.; Koch, M.; Fischer, B.M. Switchable THz filter based on a vanadium dioxide layer inside a Fabry–Pérot cavity. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 1035–1039. [Google Scholar]
- Papari, G.P.; Pellegrino, A.L.; Malandrino, G.; Andreone, A. Sensing enhancement of a Fabry-Perot THz cavity using switchable VO2 mirrors. Opt. Express 2022, 30, 19402–19415. [Google Scholar] [CrossRef] [PubMed]
- Ion, A.; Frohnhofen, J.; Wall, L.; Kovacs, R.; Alistar, M.; Lindsay, J.; Lopes, P.; Chen, H.T.; Baudisch, P. Metamaterial mechanisms. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016; pp. 529–539. [Google Scholar]
- Staude, I.; Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photon. 2017, 11, 274–284. [Google Scholar] [CrossRef]
- Watts, C.M.; Liu, X.; Padilla, W.J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120. [Google Scholar] [CrossRef] [PubMed]
- Aslinezhad, M. High sensitivity refractive index and temperature sensor based on semiconductor metamaterial perfect absorber in the terahertz band. Opt. Commun. 2020, 463, 125411. [Google Scholar] [CrossRef]
- Askari, M.; Hosseini, M. Infrared metamaterial refractive-index-based sensor. J. Opt. Soc. Am. B 2020, 37, 2712–2718. [Google Scholar] [CrossRef]
- Le, K.Q.; Ngo, Q.M.; Nguyen, T.K. Nanostructured metal–insulator–metal metamaterials for refractive index biosensing applications: Design, fabrication, and characterization. IEEE J. Sel. Top. Quantum Electron. 2016, 23, 388–393. [Google Scholar] [CrossRef]
- Zhou, J.; Koschny, T.; Soukoulis, C.M. An efficient way to reduce losses of left-handed metamaterials. Opt. Express 2008, 16, 11147–11152. [Google Scholar]
- Plum, E.; Fedotov, V.; Kuo, P.; Tsai, D.; Zheludev, N. Towards the lasing spaser: Controlling metamaterial optical response with semiconductor quantum dots. Opt. Express 2009, 17, 8548–8551. [Google Scholar] [CrossRef]
- Boltasseva, A.; Shalaev, V.M. Fabrication of optical negative-index metamaterials: Recent advances and outlook. Metamaterials 2008, 2, 1–17. [Google Scholar] [CrossRef]
- Yoo, D.; Nguyen, N.C.; Martin-Moreno, L.; Mohr, D.A.; Carretero-Palacios, S.; Shaver, J.; Peraire, J.; Ebbesen, T.W.; Oh, S.H. High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography. Nano Lett. 2016, 16, 2040–2046. [Google Scholar] [CrossRef] [PubMed]
- Bang, S.; Kim, J.; Yoon, G.; Tanaka, T.; Rho, J. Recent advances in tunable and reconfigurable metamaterials. Micromachines 2018, 9, 560. [Google Scholar] [PubMed]
- Saleem, M.; Lee, K.H. Optical sensor: A promising strategy for environmental and biomedical monitoring of ionic species. RSC Adv. 2015, 5, 72150–72287. [Google Scholar] [CrossRef]
- Long, F.; Zhu, A.; Shi, H. Recent advances in optical biosensors for environmental monitoring and early warning. Sensors 2013, 13, 13928–13948. [Google Scholar] [PubMed]
- Tiwana, M.I.; Redmond, S.J.; Lovell, N.H. A review of tactile sensing technologies with applications in biomedical engineering. Sens. Actuators Phys. 2012, 179, 17–31. [Google Scholar] [CrossRef]
- Scully, C.G.; Lee, J.; Meyer, J.; Gorbach, A.M.; Granquist-Fraser, D.; Mendelson, Y.; Chon, K.H. Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Trans. Biomed. Eng. 2011, 59, 303–306. [Google Scholar]
- Von Bültzingslöwen, C.; McEvoy, A.K.; McDonagh, C.; MacCraith, B.D.; Klimant, I.; Krause, C.; Wolfbeis, O.S. Sol–gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst 2002, 127, 1478–1483. [Google Scholar] [CrossRef]
- Adley, C.C. Past, present and future of sensors in food production. Foods 2014, 3, 491–510. [Google Scholar]
- Yamada, K. Silicon photonic wire waveguides: Fundamentals and applications. In Silicon Photonics II; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–29. [Google Scholar]
- Ren, G.; Chen, S.; Cheng, Y.; Zhai, Y. Study on inverse taper based mode transformer for low loss coupling between silicon wire waveguide and lensed fiber. Opt. Commun. 2011, 284, 4782–4788. [Google Scholar]
- Dancila, D.; Rottenberg, X.; Focant, N.; Tilmans, H.A.; De Raedt, W.; Huynen, I. Compact cavity resonators using high impedance surfaces. Appl. Phys. A 2011, 103, 799–804. [Google Scholar] [CrossRef]
- Broas, R.J.; Sievenpiper, D.F.; Yablonovitch, E. A high-impedance ground plane applied to a cellphone handset geometry. IEEE Trans. Microw. Theory Tech. 2001, 49, 1262–1265. [Google Scholar] [CrossRef]
- Kern, D.J.; Werner, D.H.; Monorchio, A.; Lanuzza, L.; Wilhelm, M.J. The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Trans. Antennas Propag. 2005, 53, 8–17. [Google Scholar] [CrossRef]
- Landy, N.; Smith, D.R. A full-parameter unidirectional metamaterial cloak for microwaves. Nat. Mater. 2013, 12, 25–28. [Google Scholar] [CrossRef]
- Poirson, J.; Bretenaker, F.; Vallet, M.; Le Floch, A. Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses. J. Opt. Soc. Am. B 1997, 14, 2811–2817. [Google Scholar] [CrossRef]
- Chen, X.; Chardin, C.; Makles, K.; Caër, C.; Chua, S.; Braive, R.; Robert-Philip, I.; Briant, T.; Cohadon, P.F.; Heidmann, A.; et al. High-finesse Fabry–Perot cavities with bidimensional Si3N4 photonic-crystal slabs. Light Sci. Appl. 2017, 6, e16190. [Google Scholar]
- Steinmetz, T.; Colombe, Y.; Hunger, D.; Hänsch, T.; Balocchi, A.; Warburton, R.; Reichel, J. Stable fiber-based Fabry-Pérot cavity. Appl. Phys. Lett. 2006, 89, 111110. [Google Scholar] [CrossRef]
- Pfeifer, H.; Ratschbacher, L.; Gallego, J.; Saavedra, C.; Faßbender, A.; von Haaren, A.; Alt, W.; Hofferberth, S.; Köhl, M.; Linden, S.; et al. Achievements and perspectives of optical fiber Fabry–Perot cavities. Appl. Phys. B 2022, 128, 29. [Google Scholar] [CrossRef]
- Malak, M.; Pavy, N.; Marty, F.; Peter, Y.A.; Liu, A.; Bourouina, T. Micromachined Fabry–Perot resonator combining submillimeter cavity length and high quality factor. Appl. Phys. Lett. 2011, 98. [Google Scholar]
- Hunger, D.; Steinmetz, T.; Colombe, Y.; Deutsch, C.; Hänsch, T.W.; Reichel, J. A fiber Fabry–Perot cavity with high finesse. New J. Phys. 2010, 12, 065038. [Google Scholar] [CrossRef]
- Mathew, J.; Schneller, O.; Polyzos, D.; Havermann, D.; Carter, R.M.; MacPherson, W.N.; Hand, D.P.; Maier, R.R. In-fiber Fabry–Perot cavity sensor for high-temperature applications. J. Light. Technol. 2015, 33, 2419–2425. [Google Scholar] [CrossRef]
- Bae, H.; Yun, D.; Liu, H.; Olson, D.A.; Yu, M. Hybrid miniature Fabry–Perot sensor with dual optical cavities for simultaneous pressure and temperature measurements. J. Light. Technol. 2014, 32, 1585–1593. [Google Scholar] [CrossRef]
- Hasar, U.; Ozbek, I.; Oral, E.; Karacali, T.; Efeoglu, H. The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications. Opt. Express 2012, 20, 22208–22223. [Google Scholar]
- Feuchter, T.; Thirstrup, C. High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity. IEEE Photon. Technol. Lett. 1994, 6, 1244–1247. [Google Scholar]
- Rao, Y.J.; Ran, Z.L.; Gong, Y. Fiber-Optic Fabry-Perot Sensors: An Introduction; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Park, G.C.; Park, K. Critically coupled Fabry–Perot cavity with high signal contrast for refractive index sensing. Sci. Rep. 2021, 11, 19575. [Google Scholar]
- Taufiqurrahman, S.; Dicky, G.; Estu, T.; Daud, P.; Mahmudin, D.; Anshori, I. Free spectral range and quality factor enhancement of multi-path optical ring resonator for sensor application. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2256, p. 020003. [Google Scholar]
- Urbonas, D.; Balčytis, A.; Gabalis, M.; Vaškevičius, K.; Naujokaitė, G.; Juodkazis, S.; Petruškevičius, R. Ultra-wide free spectral range, enhanced sensitivity, and removed mode splitting SOI optical ring resonator with dispersive metal nanodisks. Opt. Lett. 2015, 40, 2977–2980. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Sun, F.; Wang, C.; Wang, J.; Tian, H. High-sensitivity broad free-spectral-range two-dimensional three-slot photonic crystal sensor integrated with a 1D photonic crystal bandgap filter. Appl. Opt. 2019, 58, 5997–6002. [Google Scholar] [PubMed]
- Chakravarty, S.; Lai, W.C.; Zou, Y.; Drabkin, H.A.; Gemmill, R.M.; Simon, G.R.; Chin, S.H.; Chen, R.T. Multiplexed specific label-free detection of NCI-H358 lung cancer cell line lysates with silicon based photonic crystal microcavity biosensors. Biosens. Bioelectron. 2013, 43, 50–55. [Google Scholar] [PubMed]
- Mandal, S.; Erickson, D. Nanoscale optofluidic sensor arrays. Opt. Express 2008, 16, 1623–1631. [Google Scholar]
- Zhang, X.; Zhou, G.; Shi, P.; Du, H.; Lin, T.; Teng, J.; Chau, F.S. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities. Opt. Lett. 2016, 41, 1197–1200. [Google Scholar] [CrossRef]
- Xiang, L.; Huang, L. High-sensitivity complex refractive index sensor by designing a slot-waveguide side-coupled Fano resonant cavity. Opt. Commun. 2020, 475, 126298. [Google Scholar]
- Gu, M.; Yuan, S.; Yuan, Q.; Tong, Z. Temperature-independent refractive index sensor based on fiber Bragg grating and spherical-shape structure. Opt. Lasers Eng. 2019, 115, 86–89. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, Z.; Zhang, Z.; Lin, Q.; Yao, K.; Zhang, F.; Jiao, Y.; Zhao, L.; Tian, B.; Yang, P.; et al. High Sensitivity Optical Fiber Mach–Zehnder Refractive Index Sensor Based on Waist-Enlarged Bitaper. Micromachines 2022, 13, 689. [Google Scholar]
- Halendy, M.; Ertman, S. Whispering-Gallery Mode Micro-Ring Resonator Integrated with a Single-Core Fiber Tip for Refractive Index Sensing. Sensors 2023, 23, 9424. [Google Scholar]
- Huang, W.; Luo, Y.; Zhang, W.; Li, C.; Li, L.; Yang, Z.; Xu, P. High-sensitivity refractive index sensor based on Ge–Sb–Se chalcogenide microring resonator. Infrared Phys. Technol. 2021, 116, 103792. [Google Scholar] [CrossRef]
- Kundal, S.; Kumar, R.; Khandelwal, A.; Hiremath, K.R. Mathematical modelling of a ring resonator based refractive index sensor for cancer detection. Opt. Quantum Electron. 2023, 55, 1020. [Google Scholar]
Name of Layer | Parameter Name | Value (nm) |
---|---|---|
Si | Width (WSi) | 107 |
Height (HSi) | WSi/2 | |
Length (LSi) | variable | |
SiO2 | Height (HSiO2) | 2000 |
Length (LSiO2) | variable |
Sensing Arrangements | Sens. (nm/RIU) | Oper. Range (RIU) | Ref. |
---|---|---|---|
FBG and spherical-shape structure | 2.87 | 1.357–1.458 | [80] |
Optical fiber Mach–Zehnder | 57.62 | 1.35–1.40 | [81] |
Fiber tip integrated whispering gallery mode mirco-ring resonator | 63 | 1–1.33 | [82] |
Ge–Sb–Se chalcogenide microring resonator | 123 | 1.3328–1.342 | [83] |
FDTD and 2D FEM analysis of ring resonator | 146 | 1.35–1.39 | [84] |
VO2 based Optical Resonator | 179.56 | 1.36–1.44 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayaz, R.M.A.; Balazadeh Koucheh, A.; Sendur, K. Broadband-Tunable Vanadium Dioxide (VO2)-Based Linear Optical Cavity Sensor. Nanomaterials 2024, 14, 328. https://doi.org/10.3390/nano14040328
Ayaz RMA, Balazadeh Koucheh A, Sendur K. Broadband-Tunable Vanadium Dioxide (VO2)-Based Linear Optical Cavity Sensor. Nanomaterials. 2024; 14(4):328. https://doi.org/10.3390/nano14040328
Chicago/Turabian StyleAyaz, Rana M. Armaghan, Amin Balazadeh Koucheh, and Kursat Sendur. 2024. "Broadband-Tunable Vanadium Dioxide (VO2)-Based Linear Optical Cavity Sensor" Nanomaterials 14, no. 4: 328. https://doi.org/10.3390/nano14040328
APA StyleAyaz, R. M. A., Balazadeh Koucheh, A., & Sendur, K. (2024). Broadband-Tunable Vanadium Dioxide (VO2)-Based Linear Optical Cavity Sensor. Nanomaterials, 14(4), 328. https://doi.org/10.3390/nano14040328