A Review of Benzophenone-Based Derivatives for Organic Light-Emitting Diodes
Abstract
:1. Introduction
2. Benzophenone-Based Host Materials Used for Phosphorescent Emitters
3. Benzophenone-Based Bipolar Host Materials Used for TADF Emitters
4. Benzophenone-Based Emitters Employing a D–A Molecular Structure
5. Benzophenone-Based Emitters Employing a Symmetric D–A–D Structure
6. Benzophenone-Based TADF Emitters Employing an Asymmetric D–A–D Structure
7. Benzophenone-Based TADF Emitters Employing a Dendritic Structure
8. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Luo, Y.-J.; Lu, Z.-Y.; Huang, Y. Triplet fusion delayed fluorescence materials for OLEDs. Chin. Chem. Lett. 2016, 27, 1223–1230. [Google Scholar] [CrossRef]
- Zeng, H.; Huang, Q.; Liu, J.; Huang, Y.; Zhou, J.; Zhao, S.; Lu, Z. A Red-Emissive Sextuple Hydrogen-Bonding Self-Assembly Molecular Duplex Bearing Perylene Diimide Fluorophores for Warm-White Organic Light-Emitting Diode Application. Chin. J. Chem. 2016, 34, 387–396. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, W.; Ye, K.; Zhang, H. Synthesis, Structure and Properties of a Novel Benzothiazole-based Diboron-Bridged π-Conjugated Ladder. Acta Chim. Sin. 2016, 74, 179. [Google Scholar] [CrossRef]
- Huang, H.; Liu, L.; Wang, J.; Zhou, Y.; Hu, H.; Ye, X.; Ye, X.; Liu, G.; Xu, Z.; Xu, H.; et al. Aggregation caused quenching to aggregation induced emission transformation: A precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging. Chem. Sci. 2022, 13, 3129–3139. [Google Scholar] [CrossRef]
- Zhong, J.; Han, M.; Li, C.; Li, R.; He, H. Facile and scalable fabrication process of electroluminescent filament with high luminescent efficiency. Mater. Lett. 2023, 350, 134868. [Google Scholar] [CrossRef]
- Im, Y.; Byun, S.Y.; Kim, J.H.; Lee, D.R.; Oh, C.S.; Yook, K.S.; Lee, J.Y. Recent Progress in High-Efficiency Blue-Light-Emitting Materials for Organic Light-Emitting Diodes. Adv. Funct. Mater. 2017, 27, 1603007. [Google Scholar] [CrossRef]
- Root, S.E.; Savagatrup, S.; Printz, A.D.; Rodriquez, D.; Lipomi, D.J. Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. Chem. Rev. 2017, 117, 6467–6499. [Google Scholar] [CrossRef]
- Kraft, A.; Grimsdale, A.C.; Holmes, A.B. Electroluminescent Conjugated Polymers—Seeing Polymers in a New Light. Angew. Chem. Int. Ed. 1998, 37, 402–428. [Google Scholar] [CrossRef]
- Bernius, M.T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Progress with Light-Emitting Polymers. Adv. Mater. 2000, 12, 1737–1750. [Google Scholar] [CrossRef]
- Mitschke, U.; Bäuerle, P. The electroluminescence of organic materials. J. Mater. Chem. 2000, 10, 1471–1507. [Google Scholar] [CrossRef]
- Shirota, Y. Organic materials for electronic and optoelectronic devices. J. Mater. Chem. 2000, 10, 1–25. [Google Scholar] [CrossRef]
- Hung, L.S.; Chen, C.H. Recent progress of molecular organic electroluminescent materials and devices. Mater. Sci. Eng. R Rep. 2002, 39, 143–222. [Google Scholar] [CrossRef]
- Kulkarni, A.P.; Tonzola, C.J.; Babel, A.; Jenekhe, S.A. Electron Transport Materials for Organic Light-Emitting Diodes. Chem. Mater. 2004, 16, 4556–4573. [Google Scholar] [CrossRef]
- Hughes, G.; Bryce, M.R. Electron-transporting materials for organic electroluminescent and electrophosphorescent devices. J. Mater. Chem. 2005, 15, 94. [Google Scholar] [CrossRef]
- Shirota, Y.; Kageyama, H. Charge Carrier Transporting Molecular Materials and Their Applications in Devices. Chem. Rev. 2007, 107, 953–1010. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.-H.; Moorefield, C.N.; Newkome, G.R. Dendritic macromolecules for organic light-emitting diodes. Chem. Soc. Rev. 2008, 37, 2543. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Yang, C. Blue fluorescent emitters: Design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 2013, 42, 4963. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, X.; Yan, H.; Chen, Z.; Liu, Y.; Liu, S. Highly efficient GaN-based high-power flip-chip light-emitting diodes. Opt. Express 2019, 27, A669. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Liu, X.; Yan, H.; Gao, Y.; Xu, H.; Zhao, J.; Quan, Z.; Gui, C.; Liu, S. The effect of nanometre-scale V-pits on electronic and optical properties and efficiency droop of GaN-based green light-emitting diodes. Sci. Rep. 2018, 8, 11053. [Google Scholar] [CrossRef]
- Wang, Z.B.; Helander, M.G.; Qiu, J.; Puzzo, D.P.; Greiner, M.T.; Hudson, Z.M.; Wang, S.; Liu, Z.W.; Lu, Z.H. Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nat. Photonics 2011, 5, 753–757. [Google Scholar] [CrossRef]
- Kim, J.-J.; Han, M.-K.; Noh, Y.-Y. Flexible OLEDs and organic electronics. Semicond. Sci. Technol. 2011, 26, 030301. [Google Scholar] [CrossRef]
- Baldo, M.A.; O’Brien, D.F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.E.; Forrest, S.R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151–154. [Google Scholar] [CrossRef]
- Baldo, M.A.; Lamansky, S.; Burrows, P.E.; Thompson, M.E.; Forrest, S.R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 1999, 75, 4–6. [Google Scholar] [CrossRef]
- Sun, Y.; Giebink, N.C.; Kanno, H.; Ma, B.; Thompson, M.E.; Forrest, S.R. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 2006, 440, 908–912. [Google Scholar] [CrossRef]
- Tao, Y.; Yang, C.; Qin, J. Organic host materials for phosphorescent organic light-emitting diodes. Chem. Soc. Rev. 2011, 40, 2943. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Recent progress in metal–organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014, 43, 3259–3302. [Google Scholar] [CrossRef]
- Wu, H.; Ying, L.; Yang, W.; Cao, Y. Progress and perspective of polymer white light-emitting devices and materials. Chem. Soc. Rev. 2009, 38, 3391. [Google Scholar] [CrossRef]
- Yersin, H. Highly Efficient OLEDs with Phosphorescent Materials; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Cao, L.; Klimes, K.; Ji, Y.; Fleetham, T.; Li, J. Efficient and stable organic light-emitting devices employing phosphorescent molecular aggregates. Nat. Photonics 2021, 15, 230–237. [Google Scholar] [CrossRef]
- Fusella, M.A.; Saramak, R.; Bushati, R.; Menon, V.M.; Weaver, M.S.; Thompson, N.J.; Brown, J.J. Plasmonic enhancement of stability and brightness in organic light-emitting devices. Nature 2020, 585, 379–382. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, S.; Moon, C.-K.; Kim, S.-Y.; Park, Y.-S.; Lee, J.-H.; Woo Lee, J.; Huh, J.; You, Y.; Kim, J.-J. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat. Commun. 2014, 5, 4769. [Google Scholar] [CrossRef] [PubMed]
- Baldo, M.A.; Thompson, M.E.; Forrest, S.R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. Nature 2000, 403, 750–753. [Google Scholar] [CrossRef] [PubMed]
- Murawski, C.; Leo, K.; Gather, M.C. Efficiency Roll-Off in Organic Light-Emitting Diodes. Adv. Mater. 2013, 25, 6801–6827. [Google Scholar] [CrossRef] [PubMed]
- Reineke, S.; Walzer, K.; Leo, K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Phys. Rev. B 2007, 75, 125328. [Google Scholar] [CrossRef]
- Ligthart, A.; de Vries, X.; Zhang, L.; Pols, M.C.W.M.; Bobbert, P.A.; van Eersel, H.; Coehoorn, R. Effect of Triplet Confinement on Triplet–Triplet Annihilation in Organic Phosphorescent Host–Guest Systems. Adv. Funct. Mater. 2018, 28, 1804618. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Zhong, A.; Huang, G.; Wu, F.; Li, D.; Teng, M.; Wang, J.; Han, D. Deep red PhOLED from dimeric salophen Platinum(II) complexes. Dye. Pigment. 2019, 162, 590–598. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, W.; Wang, B.; Mu, G.; Xu, P.; Wang, L.; Huang, H.; Chen, J.; Ma, D. Construction of High Tg Bipolar Host Materials with Balanced Electron–Hole Mobility Based on 1,2,4-Thiadiazole for Phosphorescent Organic Light-Emitting Diodes. Chem. Mater. 2014, 26, 2388–2395. [Google Scholar] [CrossRef]
- Huang, X.-L.; Zou, J.-H.; Liu, J.-Z.; Jin, G.; Li, J.-B.; Yao, S.-L.; Peng, J.-B.; Cao, Y.; Zhu, X.-H. A high Tg small-molecule arylamine derivative as a doped hole-injection/transport material for stable organic light-emitting diodes. Org. Electron. 2018, 58, 139–144. [Google Scholar] [CrossRef]
- Sarala, L.; Babu Yathirajula, R.; Gopikrishna, P.; Elaiyappillai, E.; Bella, A.; Sundar, M.S.; Iyer, P.K.; Johnson, P.M. Pronounced luminescence efficiency and thermal stability of small imidazole architect 2-(1,4,5-triphenyl-1H-imidazol-2-yl)phenol for efficient non-doped blue OLEDs. J. Photochem. Photobiol. A Chem. 2018, 365, 232–237. [Google Scholar] [CrossRef]
- Chien, C.; Chen, C.; Hsu, F.; Shu, C.; Chou, P.; Lai, C. Multifunctional Deep-Blue Emitter Comprising an Anthracene Core and Terminal Triphenylphosphine Oxide Groups. Adv. Funct. Mater. 2009, 19, 560–566. [Google Scholar] [CrossRef]
- Cho, Y.J.; Taylor, S.; Aziz, H. Increased Electromer Formation and Charge Trapping in Solution-Processed versus Vacuum-Deposited Small Molecule Host Materials of Organic Light-Emitting Devices. ACS Appl. Mater. Interfaces 2017, 9, 40564–40572. [Google Scholar] [CrossRef]
- Shibata, M.; Sakai, Y.; Yokoyama, D. Advantages and disadvantages of vacuum-deposited and spin-coated amorphous organic semiconductor films for organic light-emitting diodes. J. Mater. Chem. C 2015, 3, 11178–11191. [Google Scholar] [CrossRef]
- Wang, Y.; Yun, J.H.; Wang, L.; Lee, J.Y. High Triplet Energy Hosts for Blue Organic Light-Emitting Diodes. Adv. Funct. Mater. 2021, 31, 2008332. [Google Scholar] [CrossRef]
- Idris, M.; Coburn, C.; Fleetham, T.; Milam-Guerrero, J.; Djurovich, P.I.; Forrest, S.R.; Thompson, M.E. Phenanthro [9,10-d]triazole and imidazole derivatives: High triplet energy host materials for blue phosphorescent organic light emitting devices. Mater. Horiz. 2019, 6, 1179–1186. [Google Scholar] [CrossRef]
- Maheshwaran, A.; Sree, V.G.; Park, H.; Kim, H.; Han, S.H.; Lee, J.Y.; Jin, S. High Efficiency Deep-Blue Phosphorescent Organic Light-Emitting Diodes with CIE x, y (≤0.15) and Low Efficiency Roll-Off by Employing a High Triplet Energy Bipolar Host Material. Adv. Funct. Mater. 2018, 28, 1802945. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, C.; Batagoda, T.; Coburn, C.; Thompson, M.E.; Forrest, S.R. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes. Nat. Commun. 2017, 8, 15566. [Google Scholar] [CrossRef] [PubMed]
- Scholz, S.; Kondakov, D.; Lussem, B.; Leo, K. Degradation Mechanisms and Reactions in Organic Light-Emitting Devices. Chem. Rev. 2015, 115, 8449–8503. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yue, L.; Yu, Y.; Liu, B.; Dang, J.; Sun, Y.; Zhou, G.; Wu, Z.; Wong, W. Strategically Formulating Aggregation-Induced Emission-Active Phosphorescent Emitters by Restricting the Coordination Skeletal Deformation of Pt(II) Complexes Containing Two Independent Monodentate Ligands. Adv. Opt. Mater. 2020, 8, 2000079. [Google Scholar] [CrossRef]
- Rajamalli, P.; Senthilkumar, N.; Huang, P.-Y.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H. New Molecular Design Concurrently Providing Superior Pure Blue, Thermally Activated Delayed Fluorescence and Optical Out-Coupling Efficiencies. J. Am. Chem. Soc. 2017, 139, 10948–10951. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tao, W.; Chen, W.; Xiao, Y.; Wang, K.; Cao, C.; Yu, J.; Li, S.; Geng, F.; Adachi, C.; et al. Red/Near-Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100% Internal Quantum Efficiency. Angew. Chem. Int. Ed. 2019, 58, 14660–14665. [Google Scholar] [CrossRef]
- Albrecht, K.; Matsuoka, K.; Fujita, K.; Yamamoto, K. Carbazole Dendrimers as Solution-Processable Thermally Activated Delayed-Fluorescence Materials. Angew. Chem. Int. Ed. 2015, 54, 5677–5682. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes. J. Am. Chem. Soc. 2012, 134, 14706–14709. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, T.; Wang, Z.; Wang, L.; Zhan, L.; Gong, S.; Zhong, C.; Lu, Z.-H.; Zhang, S.; Yang, C. De Novo Design of Excited-State Intramolecular Proton Transfer Emitters via a Thermally Activated Delayed Fluorescence Channel. J. Am. Chem. Soc. 2018, 140, 8877–8886. [Google Scholar] [CrossRef]
- Goushi, K.; Yoshida, K.; Sato, K.; Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photonics 2012, 6, 253–258. [Google Scholar] [CrossRef]
- Ahn, D.H.; Kim, S.W.; Lee, H.; Ko, I.J.; Karthik, D.; Lee, J.Y.; Kwon, J.H. Highly efficient blue thermally activated delayed fluorescence emitters based on symmetrical and rigid oxygen-bridged boron acceptors. Nat. Photonics 2019, 13, 540–546. [Google Scholar] [CrossRef]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, Y.; Cai, X.; Chen, D.; Xie, G.; Liu, K.; Wu, Y.-C.; Lo, C.-C.; Lien, A.; Cao, Y.; et al. Structure–Performance Investigation of Thioxanthone Derivatives for Developing Color Tunable Highly Efficient Thermally Activated Delayed Fluorescence Emitters. ACS Appl. Mater Interfaces 2016, 8, 8627–8636. [Google Scholar] [CrossRef] [PubMed]
- Im, Y.; Kim, M.; Cho, Y.J.; Seo, J.-A.; Yook, K.S.; Lee, J.Y. Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters. Chem. Mater. 2017, 29, 1946–1963. [Google Scholar] [CrossRef]
- Cai, X.; Li, X.; Xie, G.; He, Z.; Gao, K.; Liu, K.; Chen, D.; Cao, Y.; Su, S.-J. Rate-limited effect’ of reverse intersystem crossing process: The key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes. Chem. Sci. 2016, 7, 4264–4275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, C.; Ye, H.; Zhong, C.; Khan, A.; Yang, S.; Fung, M.; Jiang, Z.; Adachi, C.; Liao, L. Through Space Charge Transfer for Efficient Sky-Blue Thermally Activated Delayed Fluorescence (TADF) Emitter with Unconjugated Connection. Adv. Opt. Mater. 2020, 8, 1901150. [Google Scholar] [CrossRef]
- Cai, M.; Auffray, M.; Zhang, D.; Zhang, Y.; Nagata, R.; Lin, Z.; Tang, X.; Chan, C.-Y.; Lee, Y.-T.; Huang, T.; et al. Enhancing spin-orbital coupling in deep-blue/blue TADF emitters by minimizing the distance from the heteroatoms in donors to acceptors. Chem. Eng. J. 2021, 420, 127591. [Google Scholar] [CrossRef]
- Cui, L.; Nomura, H.; Geng, Y.; Kim, J.U.; Nakanotani, H.; Adachi, C. Controlling Singlet–Triplet Energy Splitting for Deep-Blue Thermally Activated Delayed Fluorescence Emitters. Angew. Chem. Int. Ed. 2017, 56, 1571–1575. [Google Scholar] [CrossRef]
- Chatterjee, T.; Wong, K. Perspective on Host Materials for Thermally Activated Delayed Fluorescence Organic Light Emitting Diodes. Adv. Opt. Mater. 2019, 7, 1800565. [Google Scholar] [CrossRef]
- Zhou, S.-Y.; Wan, H.-B.; Zhou, F.; Gu, P.-Y.; Xu, Q.-F.; Lu, J.-M. AIEgens-lightened Functional Polymers: Synthesis, Properties and Applications. Chin. J. Polym. Sci. 2019, 37, 302–326. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Gui, C.; Fang, L.; Zhang, X.; Wang, S.; Chen, S.; Shi, H.; Tang, B.Z. Thermally activated delayed fluorescence material with aggregation-induced emission properties for highly efficient organic light-emitting diodes. J. Mater. Chem. C Mater. 2018, 6, 2873–2881. [Google Scholar] [CrossRef]
- Wu, J.-L.; Zhang, C.; Qin, W.; Quan, D.-P.; Ge, M.-L.; Liang, G.-D. Thermoresponsive Fluorescent Semicrystalline Polymers Decorated with Aggregation Induced Emission Luminogens. Chin. J. Polym. Sci. 2019, 37, 394–400. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Z.; Cai, Z.; Guo, J.; Guo, J.; Shen, P.; Wang, Z.; Zhao, Z.; Ma, D.; Tang, B.Z. Robust luminescent small molecules with aggregation-induced delayed fluorescence for efficient solution-processed OLEDs. J. Mater. Chem. C Mater. 2019, 7, 330–339. [Google Scholar] [CrossRef]
- Huang, J.; Nie, H.; Zeng, J.; Zhuang, Z.; Gan, S.; Cai, Y.; Guo, J.; Su, S.; Zhao, Z.; Tang, B.Z. Highly Efficient Nondoped OLEDs with Negligible Efficiency Roll-Off Fabricated from Aggregation-Induced Delayed Fluorescence Luminogens. Angew. Chem. Int. Ed. 2017, 56, 12971–12976. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.B.; Lam, J.W.Y.; Tang, B.Z. Recent Progress in AIE-active Polymers. Chin. J. Polym. Sci. 2019, 37, 289–301. [Google Scholar] [CrossRef]
- Gu, J.; Qin, A.; Tang, B.Z. Polymers with Aggregation-Induced Emission Characteristics. In Principles and Applications of Aggregation-Induced Emission; Springer International Publishing: Cham, Switzerland, 2019; pp. 77–108. [Google Scholar] [CrossRef]
- Zhao, W.; He, Z.; Lam, J.W.Y.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B.Z. Rational Molecular Design for Achieving Persistent and Efficient Pure Organic Room-Temperature Phosphorescence. Chem 2016, 1, 592–602. [Google Scholar] [CrossRef]
- Kearns, D.R.; Case, W.A. Investigation of Singlet → Triplet Transitions by the Phosphorescence Excitation Method. III. Aromatic Ketones and Aldehydes. J. Am. Chem. Soc. 1966, 88, 5087–5097. [Google Scholar] [CrossRef]
- Yuan, W.Z.; Shen, X.Y.; Zhao, H.; Lam, J.W.Y.; Tang, L.; Lu, P.; Wang, C.; Liu, Y.; Wang, Z.; Zheng, Q.; et al. Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature. J. Phys. Chem. C 2010, 114, 6090–6099. [Google Scholar] [CrossRef]
- Lee, S.Y.; Yasuda, T.; Yang, Y.S.; Zhang, Q.; Adachi, C. Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone Derivatives for Full-Color Delayed Fluorescence OLEDs. Angew. Chem. Int. Ed. 2014, 53, 6402–6406. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, X.-L.; Nie, H.; Luo, W.; Hu, R.; Qin, A.; Zhao, Z.; Su, S.-J.; Tang, B.Z. Robust Luminescent Materials with Prominent Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence for High-Performance Organic Light-Emitting Diodes. Chem. Mater. 2017, 29, 3623–3631. [Google Scholar] [CrossRef]
- Guo, J.; Li, X.; Nie, H.; Luo, W.; Gan, S.; Hu, S.; Hu, R.; Qin, A.; Zhao, Z.; Su, S.; et al. Achieving High-Performance Nondoped OLEDs with Extremely Small Efficiency Roll-Off by Combining Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence. Adv. Funct. Mater. 2017, 27, 1606458. [Google Scholar] [CrossRef]
- Keruckiene, R.; Keruckas, J.; Cekaviciute, M.; Volyniuk, D.; Lee, P.-H.; Chiu, T.-L.; Lee, J.-H.; Grazulevicius, J.V. Meta-Substituted benzophenones as multifunctional electroactive materials for OLEDs. Dye. Pigment. 2020, 174, 108058. [Google Scholar] [CrossRef]
- Heravi, M.M.; Kheilkordi, Z.; Zadsirjan, V.; Heydari, M.; Malmir, M. Buchwald-Hartwig reaction: An overview. J. Organomet. Chem. 2018, 861, 17–104. [Google Scholar] [CrossRef]
- Chiba, T.; Fukada, A.; Igarashi, M.; Hikichi, T.; Ohisa, S.; Pu, Y.-J.; Kido, J. A Solution-Processable Small-Molecule Host for Phosphorescent Organic Light-Emitting Devices. J. Photopolym. Sci. Technol. 2016, 29, 317–321. [Google Scholar] [CrossRef]
- Suzuki, A. Organoborane coupling reactions (Suzuki coupling). Proc. Jpn. Acad. Ser. B 2004, 80, 359–371. [Google Scholar] [CrossRef]
- Liang, J.; Li, C.; Zhuang, X.; Ye, K.; Liu, Y.; Wang, Y. Novel Blue Bipolar Thermally Activated Delayed Fluorescence Material as Host Emitter for High-Efficiency Hybrid Warm-White OLEDs with Stable High Color-Rendering Index. Adv. Funct. Mater. 2018, 28, 1707002. [Google Scholar] [CrossRef]
- Ma, W.; Bin, Z.; Yang, G.; Liu, J.; You, J. Structurally Nontraditional Bipolar Hosts for RGB Phosphorescent OLEDs: Boosted by a ‘Butterfly-Shaped’ Medium-Ring Acceptor. Angew. Chem. Int. Ed. 2022, 61, e202116681. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Li, D.; Wang, Y.-K.; Yuan, Y.; Khan, A.; Jiang, Z.-Q.; Liao, L.-S. One-shot triphenylamine/phenylketone hybrid as a bipolar host material for efficient red phosphorescent organic light-emitting diodes. Synth. Met. 2019, 254, 42–48. [Google Scholar] [CrossRef]
- Lin, H.; Sun, D. Recent Synthetic Developments and Applications of the Ullmann Reaction. A Review. Org. Prep. Proced. Int. 2013, 45, 341–394. [Google Scholar] [CrossRef] [PubMed]
- Jhulki, S.; Seth, S.; Ghosh, A.; Chow, T.J.; Moorthy, J.N. Benzophenones as Generic Host Materials for Phosphorescent Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2016, 8, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Rueping, M.; Nachtsheim, B.J. A review of new developments in the Friedel–Crafts alkylation—From green chemistry to asymmetric catalysis. Beilstein J. Org. Chem. 2010, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, X.; Zhang, D.; Cao, X.; Jiang, T.; Zhang, X.; Tao, Y. Linkage modes on phthaloyl/triphenylamine hybrid compounds: Multi-functional AIE luminogens, non-doped emitters and organic hosts for highly efficient solution-processed delayed fluorescence OLEDs. Dye. Pigment. 2017, 137, 480–489. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Keruckas, J.; Volyniuk, D.; Andrulevičienė, V.; Keruckienė, R.; Narbutaitis, E.; Chao, Y.-C.; Rutkis, M.; Grazulevicius, J.V. Bis(N-naphthyl-N-phenylamino)benzophenones as exciton-modulating materials for white TADF OLEDs with separated charge and exciton recombination zones. Dye. Pigment. 2022, 197, 109868. [Google Scholar] [CrossRef]
- Sudheendran Swyamprabha, S.; Kishore Kesavan, K.; Siddiqui, I.; Blazevicius, D.; Jayachandran, J.; Eidimtas, M.; Nayak, S.R.; Nagar, M.R.; Yadav, R.A.K.; Krucaite, G.; et al. Novel carbazole host materials for solution processed TADF Organic Light Emitting Diodes. Dye. Pigment. 2023, 208, 110821. [Google Scholar] [CrossRef]
- Nagar, M.R.; Kumar, K.; Blazevicius, D.; Beresneviciute, R.; Krucaite, G.; Tavgeniene, D.; Hao, C.T.; Banik, S.; Jou, J.-H.; Grigalevicius, S. Solution processable carbazole-benzophenone derivatives as bipolar hosts enabling high-efficiency stable green TADF organic LEDs. J. Mater. Chem. C Mater. 2023, 11, 1579–1592. [Google Scholar] [CrossRef]
- Wang, F.; Cao, X.; Mei, L.; Zhang, X.; Hu, J.; Tao, Y. Twisted penta-Carbazole/Benzophenone Hybrid Compound as Multifunctional Organic Host, Dopant or Non-doped Emitter for Highly Efficient Solution-Processed Delayed Fluorescence OLEDs. Chin. J. Chem. 2018, 36, 241–246. [Google Scholar] [CrossRef]
- Tang, C.; Yang, T.; Cao, X.; Tao, Y.; Wang, F.; Zhong, C.; Qian, Y.; Zhang, X.; Huang, W. Tuning a Weak Emissive Blue Host to Highly Efficient Green Dopant by a CN in Tetracarbazolepyridines for Solution-Processed Thermally Activated Delayed Fluorescence Devices. Adv. Opt. Mater. 2015, 3, 786–790. [Google Scholar] [CrossRef]
- Ma, F.; Ji, H.; Zhang, D.; Xue, K.; Zhang, P.; Qi, Z.; Zhu, H. Adjusting the photophysical properties of AIE-active TADF emitters from through-bond to through-space charge transfer for high-performance solution-processed OLEDs. Dye. Pigment. 2021, 188, 109208. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Jiang, C.; Yao, C.; Xi, X. Effective Design Strategy for Aggregation-Induced Emission and Thermally Activated Delayed Fluorescence Emitters Achieving 18% External Quantum Efficiency Pure-Blue OLEDs with Extremely Low Roll-Off. ACS Appl. Mater. Interfaces 2021, 13, 57713–57724. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, X.; Chen, Y.; Chen, L.; Li, H.; Wang, W.; Wang, S.; Tian, H.; Tong, H.; Wang, L. Triazatruxene-based thermally activated delayed fluorescence small molecules with aggregation-induced emission properties for solution-processable nondoped OLEDs with low efficiency roll-off. J. Mater. Chem. C Mater. 2019, 7, 9719–9725. [Google Scholar] [CrossRef]
- Tani, K.; Yashima, T.; Miyanaga, K.; Hori, K.; Goto, K.; Tani, F.; Habuka, Y.; Suzuki, K.; Shizu, K.; Kaji, H. Carbazole and Benzophenone Based Twisted Donor–Acceptor Systems as Solution Processable Green Thermally Activated Delayed Fluorescence Organic Light Emitters. Chem. Lett. 2018, 47, 1236–1239. [Google Scholar] [CrossRef]
- Jing, Y.-Y.; Tao, X.-D.; Yang, M.-X.; Chen, X.-L.; Lu, C.-Z. Triptycene-imbedded thermally activated delayed fluorescence emitters with excellent film morphologies for applications in efficient nondoped and doped organic light-emitting devices. Chem. Eng. J. 2021, 413, 127418. [Google Scholar] [CrossRef]
- Aizawa, N.; Tsou, C.-J.; Park, I.S.; Yasuda, T. Aggregation-induced delayed fluorescence from phenothiazine-containing donor–acceptor molecules for high-efficiency non-doped organic light-emitting diodes. Polym. J. 2017, 49, 197–202. [Google Scholar] [CrossRef]
- Wu, L.; Wang, K.; Wang, C.; Fan, X.-C.; Shi, Y.-Z.; Zhang, X.; Zhang, S.-L.; Ye, J.; Zheng, C.-J.; Li, Y.-Q.; et al. Using fluorene to lock electronically active moieties in thermally activated delayed fluorescence emitters for high-performance non-doped organic light-emitting diodes with suppressed roll-off. Chem. Sci. 2021, 12, 1495–1502. [Google Scholar] [CrossRef]
- Ma, M.; Li, J.; Liu, D.; Li, D.; Dong, R.; Mei, Y. Low efficiency roll-off thermally activated delayed fluorescence emitters for non-doped OLEDs: Substitution effect of thioether and sulfone groups. Dye. Pigment. 2021, 194, 109649. [Google Scholar] [CrossRef]
- Rajamalli, P.; Martir, D.R.; Zysman-Colman, E. Pyridine-functionalized carbazole donor and benzophenone acceptor design for thermally activated delayed fluorescence emitters in blue organic light-emitting diodes. J. Photonics Energy 2018, 8, 1. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Jiang, C.; He, M.; Yao, C.; Zhang, J. Ultrapure deep-blue aggregation-induced emission and thermally activated delayed fluorescence emitters for efficient OLEDs with CIEy < 0.1 and low efficiency roll-offs. J. Mater. Chem. C Mater. 2022, 10, 3163–3171. [Google Scholar] [CrossRef]
- Nie, X.; Wang, T.; Huang, W.; Su, H.; Chen, B.; Zhang, X.; Zhang, G. Modulation of OLED efficiency via a combination of aromatic electrophilic directing and intramolecular charge transfer. J. Mater. Chem. C Mater. 2021, 9, 15698–15706. [Google Scholar] [CrossRef]
- Ho, C.-Y.; Krucaite, G.; Beresneviciute, R.; Blazevicius, D.; Lin, W.-H.; Lu, J.-C.; Lin, C.-Y.; Grigalevicius, S.; Chang, C.-H. Triphenylethene-carbazole-based molecules for the realization of blue and white aggregation-induced emission OLEDs with high luminance. Org. Electron. 2022, 108, 106571. [Google Scholar] [CrossRef]
- Kreiza, G.; Banevičius, D.; Jovaišaitė, J.; Maleckaitė, K.; Gudeika, D.; Volyniuk, D.; Gražulevičius, J.V.; Juršėnas, S.; Kazlauskas, K. Suppression of benzophenone-induced triplet quenching for enhanced TADF performance. J. Mater. Chem. C Mater. 2019, 7, 11522–11531. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, Q.; Fei, N.; Zhao, M.; Xie, L.; Cao, L.; Zhang, X.; Xie, G.; Wang, T.; Ge, Z. Simple-Structured Blue Thermally Activated Delayed Fluorescence Emitter for Solution-Processed Organic Light-Emitting Diodes with External Quantum Efficiency of over 20%. ACS Appl. Mater. Interfaces 2021, 13, 12305–12312. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cai, X.; Li, B.; Li, M.; Wang, Z.; Gan, L.; Qiao, Z.; Xie, W.; Liang, Q.; Zheng, N.; et al. Achieving Enhanced Thermally Activated Delayed Fluorescence Rates and Shortened Exciton Lifetimes by Constructing Intramolecular Hydrogen Bonding Channels. ACS Appl. Mater. Interfaces 2019, 11, 45999–46007. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Huang, Q.; Yu, T.; Wang, L.; Mao, Z.; Li, W.; Yang, Z.; Zhang, Y.; Liu, S.; Xu, J.; et al. Hydrogen-Bonding-Assisted Intermolecular Charge Transfer: A New Strategy to Design Single-Component White-Light-Emitting Materials. Adv. Funct. Mater. 2017, 27, 1703918. [Google Scholar] [CrossRef]
- Wilkinson, F.; Abdel-Shafi, A.A. Mechanism of Quenching of Triplet States by Molecular Oxygen: Biphenyl Derivatives in Different Solvents. J. Phys. Chem. A 1999, 103, 5425–5435. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Z.; Xie, Z.; Zhao, J.; Yang, Z.; Zhang, Y.; Aldred, M.P.; Chi, Z. An efficient yellow thermally activated delayed fluorescence emitter with universal applications in both doped and non-doped organic light-emitting diodes. Mater. Chem. Front. 2018, 2, 1017–1023. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Z.; Chen, X.; Xie, Z.; Liu, T.; Chi, Z.; Yang, Z.; Zhang, Y.; Aldred, M.P.; Chi, Z. Efficient triplet harvesting in fluorescence–TADF hybrid warm-white organic light-emitting diodes with a fully non-doped device configuration. J. Mater. Chem. C Mater. 2018, 6, 4257–4264. [Google Scholar] [CrossRef]
- Huang, B.; Ban, X.; Sun, K.; Ma, Z.; Mei, Y.; Jiang, W.; Lin, B.; Sun, Y. Thermally activated delayed fluorescence materials based on benzophenone derivative as emitter for efficient solution-processed non-doped green OLED. Dye. Pigment. 2016, 133, 380–386. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, Z.; Wang, X.; Baranoff, E.; Zhou, D.; Zhang, K.; Ren, Z.; Wang, S.; Zhu, W.; Wang, Y. A novel donor moiety 9,9,9′9′-tetramethyl-9,9′10,10′-tetrahydro-2,10′-biacridine via one-pot C–H arylation for TADF emitters and their application in highly efficient solution-processable OLEDs. J. Mater. Chem. C Mater. 2020, 8, 8971–8979. [Google Scholar] [CrossRef]
- Sun, J.; Jia, J.; Zhao, B.; Yang, J.; Singh, M.; An, Z.; Wang, H.; Xu, B.; Huang, W. A purely organic D-π-A-π-D emitter with thermally activated delayed fluorescence and room temperature phosphorescence for near-white OLED. Chin. Chem. Lett. 2021, 32, 1367–1371. [Google Scholar] [CrossRef]
- Sharif, P.; Alemdar, E.; Ozturk, S.; Caylan, O.; Haciefendioglu, T.; Buke, G.; Aydemir, M.; Danos, A.; Monkman, A.P.; Yildirim, E.; et al. Rational Molecular Design Enables Efficient Blue TADF−OLEDs with Flexible Graphene Substrate. Adv. Funct. Mater. 2022, 32, 2207324. [Google Scholar] [CrossRef]
- Sun, J.W.; Baek, J.Y.; Kim, K.-H.; Huh, J.-S.; Kwon, S.-K.; Kim, Y.-H.; Kim, J.-J. Azasiline-based thermally activated delayed fluorescence emitters for blue organic light emitting diodes. J. Mater. Chem. C Mater. 2017, 5, 1027–1032. [Google Scholar] [CrossRef]
- Huang, R.; Chen, H.; Liu, H.; Zhuang, Z.; Wang, J.; Yu, M.; Yang, D.; Ma, D.; Zhao, Z.; Tang, B. Creating efficient delayed fluorescence luminogens with acridine-based spiro donors to improve horizontal dipole orientation for high-performance OLEDs. Chem. Eng. J. 2022, 435, 134934. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.; Wu, X.; Xu, Y.; Li, H.; Liu, Y.; Tong, H.; Wang, L. Triazatruxene-based small molecules with thermally activated delayed fluorescence, aggregation-induced emission and mechanochromic luminescence properties for solution-processable nondoped OLEDs. J. Mater. Chem. C Mater. 2018, 6, 12503–12508. [Google Scholar] [CrossRef]
- Wu, Z.-L.; Lv, X.; Meng, L.-Y.; Chen, X.-L.; Lu, C.-Z. Tröger’s Base-Derived Thermally Activated Delayed Fluorescence Dopant for Efficient Deep-Blue Organic Light-Emitting Diodes. Molecules 2023, 28, 4832. [Google Scholar] [CrossRef] [PubMed]
- Tavgeniene, D.; Beresneviciute, R.; Blazevicius, D.; Krucaite, G.; Jacunskaite, G.; Sudheendran Swayamprabha, S.; Jou, J.-H.; Grigalevicius, S. 3-(N,N-Diphenylamino)carbazole Donor Containing Bipolar Derivatives with Very High Glass Transition Temperatures as Potential TADF Emitters for OLEDs. Coatings 2022, 12, 932. [Google Scholar] [CrossRef]
- Cai, X.; Gao, B.; Li, X.; Cao, Y.; Su, S. Singlet–Triplet Splitting Energy Management via Acceptor Substitution: Complanation Molecular Design for Deep-Blue Thermally Activated Delayed Fluorescence Emitters and Organic Light-Emitting Diodes Application. Adv. Funct. Mater. 2016, 26, 8042–8052. [Google Scholar] [CrossRef]
- Zhang, Q.; Tsang, D.; Kuwabara, H.; Hatae, Y.; Li, B.; Takahashi, T.; Lee, S.Y.; Yasuda, T.; Adachi, C. Nearly 100% Internal Quantum Efficiency in Undoped Electroluminescent Devices Employing Pure Organic Emitters. Adv. Mater. 2015, 27, 2096–2100. [Google Scholar] [CrossRef]
- Huang, R.; Yang, Z.; Chen, H.; Liu, H.; Tang, B.Z.; Zhao, Z. Sky-Blue Aggregation-Induced Delayed Fluorescence Luminogens with High Horizontal Dipole Orientation for Efficient Organic Light-Emitting Diodes. Chin. J. Chem. 2023, 41, 527–534. [Google Scholar] [CrossRef]
- Ma, F.; Zhao, G.; Zheng, Y.; He, F.; Hasrat, K.; Qi, Z. Molecular Engineering of Thermally Activated Delayed Fluorescence Emitters with Aggregation-Induced Emission via Introducing Intramolecular Hydrogen-Bonding Interactions for Efficient Solution-Processed Nondoped OLEDs. ACS Appl. Mater. Interfaces 2020, 12, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Tomkeviciene, A.; Matulaitis, T.; Guzauskas, M.; Andruleviciene, V.; Volyniuk, D.; Grazulevicius, J.V. Thianthrene and acridan-substituted benzophenone or diphenylsulfone: Effect of triplet harvesting via TADF and phosphorescence on efficiency of all-organic OLEDS. Org. Electron. 2019, 70, 227–239. [Google Scholar] [CrossRef]
- Matsuoka, K.; Albrecht, K.; Nakayama, A.; Yamamoto, K.; Fujita, K. Highly Efficient Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes with Fully Solution-Processed Organic Multilayered Architecture: Impact of Terminal Substitution on Carbazole–Benzophenone Dendrimer and Interfacial Engineering. ACS Appl. Mater. Interfaces 2018, 10, 33343–33352. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, K.; Yamamoto, K. Dendritic Structure Having a Potential Gradient: New Synthesis and Properties of Carbazole Dendrimers. J. Am. Chem. Soc. 2009, 131, 2244–2251. [Google Scholar] [CrossRef]
- Li, Y.; Xie, G.; Gong, S.; Wu, K.; Yang, C. Dendronized delayed fluorescence emitters for non-doped, solution-processed organic light-emitting diodes with high efficiency and low efficiency roll-off simultaneously: Two parallel emissive channels. Chem. Sci. 2016, 7, 5441–5447. [Google Scholar] [CrossRef]
- Matsuoka, K.; Albrecht, K.; Yamamoto, K.; Fujita, K. Mulifunctional Dendritic Emitter: Aggregation-Induced Emission Enhanced, Thermally Activated Delayed Fluorescent Material for Solution-Processed Multilayered Organic Light-Emitting Diodes. Sci. Rep. 2017, 7, 41780. [Google Scholar] [CrossRef]
TM, °C | TG, °C | TCr, °C | TD, °C | Eg, eV | ES, eV | ET, eV | ΔEST, eV | HOMO, eV | LUMO, eV | ΦPL Film, % | ΦPL Sol., % | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
HA1 | – | 91 | – | 312 | 3.21 | – | 3.02 | – | −5.17 | −2.03 | 20 | 3 |
HA2 | 118 | – | 62 | 218 | 3.05 | – | 2.65 | – | −4.74 | −2.19 | 15 | 12 |
HA3 | 342 | – | 269 | 389 | 3.66 | 2.70 | 2.66 | 0.04 | −4.78 | −2.02 | 16 | 6 |
HA4 | – | 188 | – | 553 | 3.00 | – | 2.61 | – | −5.80 | −2.80 | – | – |
HA5 | 370 | – | – | 480 | 3.52 | 2.83 | 2.69 | 0.14 | −5.77 | −2.25 | 24.4 | 15.3 |
HA6 | – | 131 | – | – | 3.10 | 3.70 | 3.00 | 0.70 | −5.60 | −2.50 | – | – |
HA7 | – | 55 | – | 339 | 2.72 | 2.77 | 2.53 | 0.24 | −5.51 | −2.79 | – | – |
HA8 | 272 | – | – | 337 | 3.91 | – | 2.97 | – | −5.80 | −1.89 | – | – |
HA9 | 291 | – | – | 445 | 3.93 | – | 2.97 | – | −5.76 | −1.83 | – | – |
HA10 | – | 122 | – | 466 | 3.91 | – | 2.95 | – | −5.78 | −1.87 | – | – |
Device with HA Host | Device Architecture |
---|---|
DHA3 | ITO/TAPC (50 nm)/mCP (10 nm)/HA3:7 wt% Ir(piq)2acac (30 nm)/Bphen (50 nm)/LiF (1 nm)/Al (100 nm) |
DHA4 | ITO (130 nm)/PEDOT:PSS (30 nm)/TFB (20 nm)/HA4:8 wt% Ir(ppy)3/Cs2CO3:Al (100 nm) |
D1HA5 | ITO/NPB (35 nm)/mCP (5 nm)/HA5:3 wt% Ir(ppy)2acac (30 nm)/B3PYMPM (30 nm)/LiF (0.5 nm)/Al (150 nm) |
D2HA5 | ITO/NPB (35 nm)/mCP (5 nm)/HA5:3 wt% Ir(bzq)2(dipba) (30 nm)/B3PYMPM (30 nm)/LiF (0.5 nm)/Al (150 nm) |
D3HA5 | ITO/NPB (35 nm)/mCP (5 nm)/HA5:3 wt% Ir(bt)2(dipba) (30 nm)/B3PYMPM (30 nm)/LiF (0.5 nm)/Al (150 nm) |
D1HA6 | ITO/TAPC (30 nm)/TCTA (10 nm)/HA6:FIrpic (20 nm)/CzPhPy (10 nm)/TmPyPB (45 nm)/LiF/Al |
D2HA6 | ITO/TAPC (30 nm)/TCTA (10 nm)/HA6:Ir(ppy)2(acac) (20 nm)/CzPhPy (10 nm)/TmPyPB (45 nm)/LiF/Al |
D3HA6 | ITO/TAPC (30 nm)/TCTA (10 nm)/HA6: Ir(mphmq)2(tmd) (20 nm)/HA8 (10 nm)/CzPhPy (10 nm)/TmPyPB (45 nm)/LiF/Al |
DHA7 | ITO/HAT-CN (10 nm)/TAPC (65 nm)/TCTA (10 nm)/HA7:10 wt% Ir(MDQ)2acac (30 nm)/TmPyPb (55 nm)/Liq (1 nm)/Al (110 nm) |
D1HA8 | ITO/NPB (40 nm)/mCP (10 nm)/HA8:9–10 wt% Ir(ppy)3 (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
D2HA8 | ITO/NPB (40 nm)/mCP (10 nm)/HA8:9–10 wt% Ir(btp)2acac (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
D3HA8 | ITO/NPB (40 nm)/mCP (10 nm)/HA8:9–10 wt% FIrpic (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
D4HA8 | ITO/NPB (40 nm)/mCP (10 nm)/HA8:9–10 wt% PO-01 (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
D1HA9 | ITO/NPB (40 nm)/mCP (10 nm)/HA9:9–10 wt% Ir(ppy)3 (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
D2HA9 | ITO/NPB (40 nm)/mCP (10 nm)/HA9:9–10 wt% Ir(btp)2acac (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
D3HA9 | ITO/NPB (40 nm)/mCP (10 nm)/HA9:9–10 wt% FIrpic (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
D4HA9 | ITO/NPB (40 nm)/mCP (10 nm)/HA9:9–10 wt% PO-01 (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
D1HA10 | ITO/NPB (40 nm)/mCP (10 nm)/HA10:9–10 wt% Ir(ppy)3 (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
D2HA10 | ITO/NPB (40 nm)/mCP (10 nm)/HA10:9–10 wt% Ir(btp)2acac (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
D3HA10 | ITO/NPB (40 nm)/mCP (10 nm)/HA10:9–10 wt% FIrpic (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
D4HA10 | ITO/NPB (40 nm)/mCP (10 nm)/HA10:9–10 wt% PO-01 (30 nm)/TmPyPB (45 nm)/LiF (2 nm)/Al (150 nm) |
Device | Host | Colour | VON, V | LMAX, cd/m2 | CE, cd/A | PE, lm/W | EQE, % | CIE (x, y) |
---|---|---|---|---|---|---|---|---|
DHA3 | HA3 | Red | – | 1094 | 5.6 | 5.30 | 8.60 | (0.68, 0.32) |
DHA4 | HA4 | Green | – | – | – | 22.0 | 14.6 | – |
D1HA5 | HA5 | Green | 2.5 | 93,330 | – | 99.1 | 25.1 | (0.29, 0.64) |
D2HA5 | HA5 | Orange | 2.6 | 31,200 | – | 61.6 | 23.1 | (0.51, 0.47) |
D3HA5 | HA5 | Red | 2.9 | 10,240 | – | 27.1 | 22.1 | (0.61, 0.36) |
D1HA6 | HA6 | Blue | 3.0 | – | – | 38.2 | 19.4 | (0.16, 0.33) |
D2HA6 | HA6 | Green | 2.9 | – | – | 75.7 | 21.0 | (0.29, 0.64) |
D3HA6 | HA6 | Red | 3.1 | – | – | 30.8 | 16.5 | (0.62, 0.38) |
DHA7 | HA7 | Red | 4.0 | 3876 | 20.6 | 12.6 | 16.1 | – |
D1HA8 | HA8 | Green | 4.5 | 3080 | 46.8 | 29.1 | 17.0 | (0.30, 0.60) |
D2HA8 | HA8 | Red | 5.0 | 905 | 5.5 | 2.2 | 5.9 | (0.65, 0.32) |
D3HA8 | HA8 | Blue | 5.5 | 708 | 10.9 | 4.6 | 5.3 | (0.17, 0.32) |
D4HA8 | HA8 | Yellow | 5.5 | 3490 | 50.6 | 28.9 | 19.2 | (0.47, 0.51) |
D1HA9 | HA9 | Green | 4.5 | 4940 | 45.6 | 31.9 | 15.6 | (0.31, 0.60) |
D2HA9 | HA9 | Red | 4.5 | 1840 | 13.2 | 9.2 | 10.8 | (0.67, 0.33) |
D3HA9 | HA9 | Blue | 4.5 | 1010 | 9.3 | 3.7 | 4.5 | (0.17, 0.32) |
D4HA9 | HA9 | Yellow | 4.5 | 6480 | 50.8 | 31.9 | 18.5 | (0.48, 0.51) |
D1HA10 | HA10 | Green | 4.5 | 5020 | 37.5 | 26.2 | 12.1 | (0.31, 0.60) |
D2HA10 | HA10 | Red | 4.0 | 1820 | 19.9 | 15.6 | 13.7 | (0.67, 0.33) |
D3HA10 | HA10 | Blue | 5.5 | 473 | 8.5 | 4.9 | 4.0 | (0.19, 0.32) |
D4HA10 | HA10 | Yellow | 4.5 | 10,700 | 30.5 | 21.3 | 10.7 | (0.48, 0.52) |
TM, °C | TG, °C | TCr, °C | TD, °C | Eg, eV | ES, eV | ET, eV | ΔEST, eV | HOMO, eV | LUMO, eV | ΦPL Film, % | ΦPL Sol., % | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | O2 | ||||||||||||
HB1 | – | 90 | – | 436 | 2.84 | 2.59 | 2.38 | 0.21 | −5.31 | −2.47 | 75 | 46 | – |
HB2 | – | 92 | – | 416 | 2.70 | 2.37 | 2.32 | 0.05 | −5.32 | −2.62 | 2 | 2 | – |
HB3 | 218 | 101 | 203 | 411 | 2.89 | 3.07 | 2.55 | 0.52 | −5.13 | −1.47 | 9 | 9 | – |
HB4 | 241 | 107 | – | 428 | 2.78 | 3.00 | 2.53 | 0.47 | −5.08 | −1.53 | 13 | 13 | – |
HB5 | – | 156 | – | – | 3.33 | 2.91 | 2.61 | 0.30 | −5.38 | −2.05 | – | – | – |
HB6 | 123 | 92 | – | 277 | 4.10 | 2.97 | 2.64 | 0.33 | −6.15 | −2.63 | – | – | – |
HB7 | 366 | 187 | – | 371 | 4.00 | 2.95 | 2.60 | 0.35 | −6.05 | −2.45 | – | – | – |
HB8 | – | – | – | 497 | 2.80 | 2.61 | 2.60 | 0.01 | −5.35 | −2.55 | – | 8 | 6 |
Device | Device Architecture |
---|---|
DHB1 | ITO/PEDOT:PSS (40 nm)/HB1:10 wt% 4CzCNPy (35–40 nm)/TmPyPB (60 nm)/LiF (0.8 nm)/Al (120 nm) |
DHB2 | ITO/PEDOT:PSS (40 nm)/HB2:10 wt% 4CzCNPy (35–40 nm)/TmPyPB (60 nm)/LiF (0.8 nm)/Al (120 nm) |
DHB3 | ITO/MoO3 (8 nm)/NPB (60 nm)/TAPC (5 nm)/HB3:5 wt% 4CzTPN (5 nm)/HB3 (15 nm)/ PFBP-2b(20 wt%):TPBi (40 nm)/LiF (1 nm)/Al |
DHB4 | ITO/MoO3 (8 nm)/NPB (60 nm)/TAPC (5 nm)/HB4:5 wt% 4CzTPN (5 nm)/HB4(15 nm)/ PFBP-2b(20 wt%):TPBi (40 nm)/LiF (1 nm)/Al |
DHB5 | ITO (125 nm)/PEDOT:PSS (30 nm)/HB5:15 wt% 4CzIPN (20 nm)/TPBi (30 nm)/LiF (1.0 nm)/Al (150 nm) |
D1HB6 | ITO (125 nm)/PEDOT:PSS (35 nm)/HB6:4CzIPN (20 nm)/PO-T2T (10 nm)/TPBi (30 nm)/LiF (1 nm)/Al (200 nm) |
D2HB6 | ITO (125 nm)/PEDOT:PSS (35 nm)/VPEC (10 nm)/HB6:4CzIPN (20 nm) /PO-T2T (10 nm)/TPBi (30 nm)/LiF (1 nm)/Al (200 nm) |
DHB7 | ITO (125 nm)/PEDOT:PSS (35 nm)/HB7:4CzIPN (20 nm)/PO-T2T (10 nm)/TPBi (30 nm)/LiF (1 nm)/Al (200 nm) |
DHB8 | ITO/PEDOT:PSS (40 nm)/HB8:10 wt% 4CzCNPy (40 nm)/TmPyPB (60 nm)/LiF (0.8 nm)/Al (100 nm) |
Device | Host | Colour | VON, V | LMAX, cd/m2 | CE, cd/A | PE, lm/W | EQE, % | CIE (x, y) |
---|---|---|---|---|---|---|---|---|
DHB1 | HB1 | Green | 3.5 | 20,322 | 43.5 | 33.3 | 13.0 | (0.32, 0.60) |
DHB2 | HB2 | Green | 3.2 | 15,510 | 29.3 | 25.4 | 9.0 | (0.33, 0.58) |
DHB3 | HB3 | White | 3.9 | 29,922 | 18.6 | – | 9.5 | (0.36, 0.31) |
DHB4 | HB4 | White | 3.6 | 15,350 | 13.8 | – | 7.1 | (0.32, 0.31) |
DHB5 | HB5 | Green | 3.4 | 8601 | 9.5 | 8.4 | 2.8 | (0.31, 0.59) |
D1HB6 | HB6 | Green | 3.0 | 16,500 | 70.7 | 55.6 | 23.2 | (0.28, 0.57) |
D2HB6 | HB6 | Green | 2.9 | 18,900 | 72.3 | 63.6 | 25.3 | (0.29, 0.58) |
DHB7 | HB7 | Green | 2.7 | 10,540 | 49.2 | 46.2 | 15.3 | (0.28, 0.57) |
DHB8 | HB8 | Green | 3.7 | 22,004 | 38.3 | – | 12.5 | (0.34, 0.58) |
TM, °C | TG, °C | TD, °C | Eg, eV | ES, eV | ET, eV | ΔEST, eV | HOMO, eV | LUMO, eV | ΦPL Film, % | ΦPL Sol., % | RD, % | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | O2 | N2 | O2 | |||||||||||
EA1 | – | 90 | 367 | 2.39 | 2.81 | 2.55 | 0.26 | −5.55 | −3.16 | 42.0 | – | 12.4 | – | – |
EA2 | – | 148 | 377 | 2.43 | 2.81 | 2.44 | 0.37 | −5.58 | −3.15 | 20.0 | – | – | – | – |
EA3 | – | – | 407 | 2.33 | 2.78 | 2.76 | 0.02 | −5.51 | −3.18 | 50.0 | – | – | – | – |
EA4 | – | – | – | 3.94 | – | – | 0.06 | −5.83 | −1.89 | 23.4 | 19.1 | 56.0 | 18.0 | – |
EA5 | – | – | – | 4.02 | – | – | 0.07 | −5.99 | −1.97 | 21.0 | 17.3 | 52.0 | 10.0 | – |
EA6 | – | 177 | 278 | 3.00 | 2.92 | 2.83 | 0.09 | −5.45 | −2.45 | 62.0 | – | – | – | 37.9 |
EA7 | – | 145 | 379 | 2.72 | 2.68 | 2.59 | 0.06 | −5.37 | −2.65 | 51.0 | – | 14.0 | – | – |
EA8 | 135 | – | – | 2.60 | – | – | 0.24 | −5.20 | −2.60 | 76.0 | 70 | – | – | – |
EA9 | – | 155 | 311 | 3.09 | 2.97 | 2.55 | 0.42 | −5.66 | −2.57 | 50.8 | – | – | – | – |
EA10 | 200 | 107 | 341 | – | 3.66 | 2.57 | 1.09 | – | – | – | – | – | – | – |
EA11 | – | – | 497 | 2.80 | 2.61 | 2.60 | 0.01 | −5.35 | −2.55 | 24.0 | – | 8.0 | 6.0 | – |
EA12 | – | 194 | 420 | 2.80 | 2.86 | 2.76 | 0.10 | −5.90 | −3.10 | 28.0 | – | 8.4 | – | – |
EA13 | – | – | 297 | 2.87 | 2.90 | 2.81 | 0.09 | −5.06 | −2.19 | 75.0 | – | – | – | 81.3 |
EA14 | – | – | – | 2.60 | – | – | 0.07 | – | – | 31.0 | – | – | – | – |
EA15 | – | 165 | 372 | 2.91 | – | – | 0.09 | −5.11 | −1.98 | 75.7 | – | – | – | 66.3 |
EA16 | – | – | – | 2.64 | 2.14 | 2.13 | 0.01 | −5.70 | −3.06 | 47.0 | – | – | – | 70.2 |
EA17 | – | – | 367 | 2.31 | 2.64 | 2.63 | 0.008 | −5.24 | −2.93 | 90.1 | – | – | – | – |
EA18 | – | 80 | 350 | 2.01 | 2.03 | 2.02 | 0.005 | −5.24 | −3.23 | 39.7 | – | – | – | – |
EA19 | – | – | 355 | 3.20 | 2.64 | 2.63 | 0.01 | −4.93 | −1.73 | – | – | – | – | – |
EA20 | – | 91 | 428 | 2.3 | 2.61 | 2.59 | 0.02 | −5.50 | −3.20 | – | – | – | – | – |
EA21 | – | 102 | 389 | 2.81 | – | – | 0.08 | −5.12 | −2.22 | 98.9 | – | – | – | 60.1 |
EA22 | – | – | 460 | 2.07 | 2.56 | 2.47 | 0.09 | −5.02 | −2.95 | 63.0 | – | 41.0 | – | – |
Device | Device Architecture |
---|---|
DEA1 | ITO/PEDOT:PSS (40 nm)/EA1 (40 nm)/TPBi (30 nm)/Cs2CO3 (2 nm)/Al (100 nm) |
DEA2 | ITO/PEDOT:PSS (40 nm)/EA2 (40 nm)/TPBi (30 nm)/Cs2CO3 (2 nm)/Al (100 nm) |
DEA3 | ITO/PEDOT:PSS (40 nm)/EA3 (40 nm)/TPBi (30 nm)/Cs2CO3 (2 nm)/Al (100 nm) |
DEA4 | ITO/NPB (30 nm)/TAPC (20 nm)/mCP (10 nm)/DPEPO:7 wt% EA4 (30 nm)/ TPBi (40 nm)/LiF (0.8 nm)/Al (100 nm) |
DEA5 | ITO/NPB (30 nm)/TAPC (20 nm)/mCP (10 nm)/DPEPO:7 wt% EA5 (30 nm)/ TPBi (40 nm)/LiF (0.8 nm)/Al (100 nm) |
DEA6 | ITO/HAT-CN (10 nm)/TAPC (30 nm)/TCTA (10 nm)/DPEPO:10 wt% EA6 (40 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (100 nm) |
DEA7 | ITO/PEDOT:PSS (25 nm)/EA7 (25 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al (150 nm) |
DEA8 | ITO (50 nm)/PEDOT:PSS (30 40 nm)/TCzl:5 wt% EA8/TPBi (50 nm)/Liq (1 nm)/Al (80 nm) |
DEA9 | ITO/TAPC (40 nm)/TCTA (20 nm)/EA9 (40 nm)/TmPyPB (50 nm)/LiF (1 nm)/Al (100 nm) |
DEA10 | ITO (120 nm)/TAPC:20 wt%MoO3 (20 nm)/TAPC (20 nm)/TCTA (10 nm)/EA10 (20 nm)/ CBP (2 nm)/TmPyPB (50 nm)/LiF (1.2 nm)/Al (120 nm) |
DEA11 | ITO/PEDOT:PSS (40 nm)/mCP:10 wt% EA11 (40 nm)/TmPyPB (60 nm)/LiF (0.8 nm)/Al (100 nm) |
D1EA12 | ITO/NPB (30 nm)/TCTA (20 nm)/CzSi (10 nm)/EA12 (20 nm)/DPEPO (10 nm)/TPBi (30 nm)/LiF (1 nm)/Al (100 nm) |
D2EA12 | ITO/NPB (30 nm)/TCTA (20 nm)/CzSi (10 nm)/DPEPO:20 wt% EA12 (20 nm)/ DPEPO (10 nm)/TPBi (30 nm)/LiF (1 nm)/Al (100 nm) |
D1EA13 | ITO/MoO3 (1 nm)/TAPC (50 nm)/mCP (10 nm)/EA13 (30 nm)/DPEPO (10 nm)/ TmPyPB (30 nm)/LiF (1 nm)/Al (100 nm) |
D2EA13 | ITO/MoO3 (1 nm)/TAPC (50 nm)/mCP (10 nm)/BCPO:20 wt% EA13 (30 nm)/DPEPO (10 nm) /TmPyPB (30 nm)/LiF (1 nm)/Al (100 nm) |
DEA14 | ITO (100 nm)/α-NPD (40 nm)/mCBP (10 nm)/EA14 (15 nm)/B3PyPB (55 nm)/Liq (1 nm)/Al (80 nm) |
D1EA15 | ITO/TAPC (30 nm)/mCP (10 nm)/EA15 (20 nm)/DPEPO (10 nm)/TmPyPB (40 nm)/LiF/Al |
D2EA15 | ITO/TAPC (30 nm)/mCP (10 nm)/DPEPO:30 wt% EA15 (20 nm)/DPEPO (10 nm)/TmPyPB (40 nm)/LiF/Al |
DEA16 | ITO/TAPC (40 nm)/TCTA (10 nm)/mCP (10 nm)/EA16/TmPyPb (40 nm)/LiF (1 nm)/Al (120 nm) |
D1EA17 | ITO/PEDOT:PSS (40 nm)/TAPC (20 nm)/EA17 (20 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (200 nm) |
D2EA17 | ITO/PEDOT:PSS (40 nm)/TAPC (20 nm)/CBP:5 wt% EA17 (20 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (200 nm) |
D1EA18 | ITO/PEDOT:PSS (40 nm)/TAPC (20 nm)/EA18 (20 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (200 nm) |
D2EA18 | ITO/PEDOT:PSS (40 nm)/TAPC (20 nm)/CBP:5 wt% EA18 (20 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (200 nm) |
DEA19 | ITO/PEDOT:PSS (30 nm)/mCP:CzAcSF:EA19(40:30:30) (40 nm) /DPEPO (10 nm)/TmPyPB (50 nm)/Liq (1 nm)/Al (100 nm) |
D1EA20 | ITO/PEDOT:PSS (40 nm)/CBP (20 nm)/CBP:10 wt% EA20 (15 nm)/TPBi (40 nm)/Mg:Ag |
D2EA20 | ITO/PEDOT:PSS (40 nm)/CBP (20 nm)/EA20 (4 nm)/2CzTPEPCz (15 nm)/TPBi (40 nm)/Mg:Ag |
D1EA21 | ITO/TAPC (30 nm)/mCP (10 nm)/EA21 (20 nm)/DPEPO (10 nm)/TmPyPB (40 nm)/LiF/Al |
D2EA21 | ITO/TAPC (30 nm)/mCP (10 nm)/DPEPO:30 wt% EA21 (20 nm)/DPEPO (10 nm)/TmPyPB (40 nm)/LiF/Al |
DEA22 | ITO/TAPC (30 nm)/TCTA (10 nm)/mCP:5 wt% EA22 (20 nm)/TmPyPb (40 nm)/LiF (1 nm)/Al |
Device | Emitter | Colour | VON, V | LMAX, cd/m2 | CE, cd/A | PE, lm/W | EQE, % | CIE (x, y) |
---|---|---|---|---|---|---|---|---|
DEA1 | EA1 | Green | 3.9 | 615 | 8.00 | 4.20 | 3.40 | (0.27, 0.43) |
DEA2 | EA2 | Blue | 4.4 | 568 | 3.90 | 1.70 | 1.80 | (0.21, 0.29) |
DEA3 | EA3 | Green | 3.8 | 1472 | 17.9 | 11.2 | 7.60 | (0.26, 0.42) |
DEA4 | EA4 | Blue | 5.5 | 663 | 7.30 | 4.20 | 5.00 | (0.18, 0.21) |
DEA5 | EA5 | Blue | 6.0 | 605 | 3.10 | 1.60 | 2.10 | (0.19, 0.22) |
DEA6 | EA6 | Blue | 3.2 | 14,724 | 44.8 | 45.6 | 17.7 | (0.17, 0.28) |
DEA7 | EA7 | Green | 2.5 | >10,000 | 20.9 | 21.8 | 6.40 | – |
DEA8 | EA8 | Green | – | – | – | – | 6.90 | – |
DEA9 | EA9 | Blue | 4.0 | 10,754 | 23.3 | 19.3 | 9.50 | (0.15, 0.15) |
DEA10 | EA10 | Green | 3.1 | 11,802 | 4.10 | 3.60 | 1.70 | (0.23, 0.37) |
DEA11 | EA11 | Green | 4.7 | 17,353 | 24.8 | – | 8.90 | (0.25, 0.48) |
D1EA12 | EA12 | Green | 3.8 | 2544 | 19.0 | 14.9 | 10.3 | (0.26, 0.47) |
D2EA12 | EA12 | Green | 4.1 | 568 | 34.9 | 27.3 | 12.5 | (0.23, 0.41) |
D1EA13 | EA13 | Green | 3.9 | 3006 | 18.2 | 14.1 | 6.59 | (0.26, 0.47) |
D2EA13 | EA13 | Green | 3.2 | 13,280 | 44.4 | 45.0 | 15.2 | (0.27, 0.50) |
DEA14 | EA14 | Yellow | – | – | – | – | 7.60 | – |
D1EA15 | EA15 | Green | 3.2 | 6823 | 34.7 | 30.1 | 14.2 | (0.20, 0,39) |
D2EA15 | EA15 | Green | 3.2 | 15,047 | 53.4 | 48.8 | 21.2 | (0.21, 0.42) |
DEA16 | EA16 | Green | 3.0 | – | 32.7 | 34.3 | 12.9 | (0.21, 0.42) |
D1EA17 | EA17 | Green | 2.5 | 21,243 | 53.7 | 52.7 | 17.3 | (0.31, 0.54) |
D2EA17 | EA17 | Green | 3.2 | 11,977 | 49.6 | 48.6 | 17.7 | (0.24, 0.49) |
D1EA18 | EA18 | Yellow | 2.5 | 11,949 | 8.90 | 7.99 | 3.35 | (0.48, 0.50) |
D2EA18 | EA18 | Green | 2.7 | 31,115 | 64.6 | 75.1 | 20.6 | (0.37, 0.55) |
DEA19 | EA19 | Blue | 4.0 | 4235 | 47.7 | 29.9 | 20.6 | – |
D1EA20 | EA20 | Yellow | 4.4 | 32,590 | 73.1 | 38.2 | 26.7 | – |
D2EA20 | EA20:2CzTPEPCz | White | 6.1 | 12,310 | 45.9 | 18.0 | 20.8 | (0.45, 0.44) |
D1EA21 | EA21 | Green | 3.2 | 26,836 | 56.4 | 43.5 | 18.7 | (0.28, 0.53) |
D2EA21 | EA21 | Green | 3.2 | 11,392 | 69.8 | 58.9 | 25.6 | (0.24, 0.49) |
DEA22 | EA22 | Green | 3.3 | – | 48.4 | 46.1 | 15.6 | – |
TM, °C | TG, °C | TCr, °C | TD, °C | Eg, eV | ES, eV | ET, eV | ΔEST, eV | HOMO, eV | LUMO, eV | ΦPL Film, % | ΦPL Sol., % | RD, % | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N2 | O2 | |||||||||||||
EB1 | – | 107 | – | 384 | 2.95 | 2.62 | 2.47 | 0.15 | −5.16 | −2.21 | 13.1 | – | 2.20 | 87.8 |
EB2 | – | 91 | – | 312 | 3.21 | – | 3.02 | – | −5.17 | −2.03 | 20.0 | – | 3.00 | – |
EB3 | – | – | – | – | 3.10 | 2.89 | 3.10 | 0.21 | −5.74 | −2.64 | 55.0 | – | 21.0 | – |
EB4 | 370 | – | – | 480 | 3.30 | 2.83 | 2.69 | 0.14 | −5.77 | −2.25 | 24.4 | – | 15.3 | – |
EB5 | – | – | – | – | 3.02 | 3.02 | 2.88 | 0.14 | −5.65 | −2.63 | 73.0 | – | 38.0 | – |
EB6 | – | – | – | – | 2.60 | – | – | 0.29 | −5.10 | −2.50 | 73.0 | 37.0 | – | – |
EB7 | – | 159 | – | 398 | 2.79 | – | – | – | −5.58 | −2.79 | – | – | – | – |
EB8 | – | – | – | – | – | – | – | 0.39 | – | – | 53.0 | – | – | 7.5 |
EB9 | 342 | – | 269 | 389 | 3.66 | 2.70 | 2.66 | 0.04 | −4.78 | −219 | 16.0 | – | 6.00 | – |
EB10 | – | – | – | 410 | – | 2.76 | 2.69 | 0.07 | – | – | 90.0 | – | – | – |
EB11 | – | – | – | 433 | 2.82 | – | – | 0.03 | −5.16 | −2.34 | 89.1 | – | – | – |
EB12 | – | – | – | 270 | 2.86 | 2.81 | 2.68 | 0.13 | −5.26 | −2.40 | 31.5 | – | – | 32.7 |
EB13 | 118 | – | 62 | 218 | 3.05 | – | 2.65 | – | −4.74 | −2.19 | 15.0 | – | 12.0 | – |
EB14 | – | – | – | – | 2.52 | 2.61 | 2.58 | 0.03 | −5.44 | −2.92 | 70.0 | – | 44.0 | – |
EB15 | – | – | – | – | 2.61 | 2.62 | 2.52 | 0.10 | −5.64 | −3.03 | 71.0 | – | 36.0 | – |
EB16 | – | – | – | – | 2.49 | 2.59 | 2.53 | 0.06 | −5.62 | −3.13 | 36.0 | – | 10.0 | – |
EB17 | – | 90 | – | 436 | 2.84 | 2.59 | 2.38 | 0.21 | −5.31 | −2.47 | 75.0 | – | 46.0 | – |
EB18 | – | 92 | – | 416 | 2.70 | 2.37 | 2.32 | 0.05 | −5.32 | −2.62 | 39.0 | – | 2.00 | – |
EB19 | – | 99 | – | 440 | 2.90 | 2.66 | 2.47 | 0.19 | −5.51 | −2.60 | 16.3 | – | – | – |
EB20 | – | – | – | – | – | 2.84 | 2.69 | 0.15 | – | – | 7.60 | – | – | – |
EB21 | – | – | – | – | – | 2.84 | 2.69 | 0.15 | – | – | 8.50 | – | – | – |
EB22 | 300 | – | – | 495 | 2.94 | 2.71 | 2.64 | 0.07 | −5.49 | −2.55 | 70.0 | – | – | – |
EB23 | – | – | – | 445 | 3.37 | 2.62 | 2.61 | 0.01 | −5.42 | −2.05 | 91.0 | – | – | 55.6 |
EB24 | – | – | – | 477 | 3.32 | 2.64 | 2.63 | 0.01 | −5.42 | −2.10 | 94.0 | – | – | 54.5 |
EB25 | – | – | – | 500 | 3.32 | 2.64 | 2.63 | 0.01 | −5.43 | −2.11 | 85.0 | – | – | 42.8 |
EB26 | – | >95 | – | >400 | 2.47 | 2.55 | 2.47 | 0.13 | −5.30 | −2.83 | 22.0 | – | 0.80 | – |
EB27 | – | >95 | – | >400 | 2.59 | 2.58 | 2.48 | 0.13 | −5.33 | −2.77 | 24.2 | – | 1.90 | – |
Device with EB Emitter | Device Architecture |
---|---|
DEB3 | ITO/α-NPD (35 nm)/mCP (5 nm)/DPEPO:6 wt% EB3 (20 nm)/ DPEPO (10 nm)/TPBi (30 nm)/LiF (0.8 nm)/Al (80 nm) |
D1EB4 | ITO/NPB (35 nm)/mCP (5 nm)/EB4 (30 nm)/B3PYMPM (30 nm)/LiF (0.5 nm)/Al (150 nm) |
D2EB4 | ITO/NPB (35 nm)/mCP (5 nm)/EB4:0.5%wt Ir(ppy)2(acac)/EB4:0.8 wt% Ir(bt)2(dipba) (30 nm)/ B3PYMPM (30 nm)/LiF (0.5 nm)/Al (150 nm) |
DEB5 | ITO/α-NPD (35 nm)/mCP (5 nm)/DPEPO:6 wt% EB5 (20 nm)/DPEPO (10 nm)/ TPBi (30 nm)/LiF (0.8 nm)/Al (80 nm) |
DEB6 | ITO(50 nm)/PEDOT:PSS (30 40 nm)/TCzl:15 wt% EB6/TPBi (70 nm)/Liq (1 nm)/Al (80 nm) |
DEB8 | ITO/TAPC (25 nm)/CBP:3 wt% EB8 (35 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al |
DEB9 | ITO/TAPC (50 nm)/mCP (10 nm)/EB9 (30 nm)/Bphen (50 nm)/LiF (1 nm)/Al (100 nm) |
DEB10 | ITO/MoO3 (1 nm)/mCP (40 nm)/EB10 (30 nm)/TBPi (50 nm)/LiF (1 nm)/Al |
DEB11 | ITO/PEDOT:PSS (40 nm)/mCPCN:25 wt% EB11 (45 nm)/ DPEPO (10 nm)/TmPyPB (40 nm)/Liq (1.2 nm)/Al (120 nm) |
DEB12 | ITO/HAT-CN (5 nm)/TAPC (30 nm)/TCTA (5 nm)/mCP (5 nm)/PPF:20% EB12(30 nm)/ PPF (10 nm)/Bphen (30 nm)/Liq (1 nm)/Al (100 nm) |
DEB14 | ITO/α-NPD (40 nm)/mCP:6 wt% EB14 (20 nm)/TPBi (40 nm)/LiF (0.8 nm)/Al (80 nm) |
DEB15 | ITO/α-NPD (40 nm)/EB15 (20 nm)/TPBi (40 nm)/LiF (0.8 nm)/Al (80 nm) |
DEB16 | ITO/α-NPD (40 nm)/mCBP:6 wt% EB16 (20 nm)/TPBi (40 nm)/LiF (0.8 nm)/Al (80 nm) |
DEB16EB5 | ITO/α-NPD (35 nm)/mCBP:18 wt% EB16 (4 nm)/PPF:6 wt%EB5 (14 nm)/PPF (40 nm)/LiF (0.8 nm)/Al (80 nm) |
DEB17 | ITO/PEDOT:PSS (40 nm)/EB17 (35–40 nm)/TmPyPB (60 nm)/LiF (0.8 nm)/Al (120 nm) |
DEB18 | ITO/PEDOT:PSS (40 nm)/EB18 (35–40 nm)/TmPyPB (60 nm)/LiF (0.8 nm)/Al (120 nm) |
DEB19 | ITO/Mo2O3 (4 nm)/mCP (30 nm)/mCP:15 wt% EB19 (30 nm)/TmTyPB (60 nm)/LiF (1.5 nm)/Al (100 nm) |
DEB20 | ITO/α-NPD (40 nm)/mCBP:10 wt% EB20 (20 nm)/TPBi (40 nm)/LiF (0.6 nm)/Al (100 nm) |
DEB21 | ITO/α-NPD (40 nm)/mCBP:10 wt% EB21 (20 nm)/TPBi (40 nm)/LiF (0.6 nm)/Al (100 nm) |
DEB22 | ITO (70 nm)/4 wt%ReO3:mCP (45 nm)/mCP (15 nm)/mCP:TSPO1:16 wt%EB22 (15 nm)/ TSPO1 (15 nm)/4 wt%Rb2CO3:TSPO1 (50 nm)/Al (100 nm) |
D1EB23 | ITO/HAT-CN (5 nm)/NPB (30 nm)/mCP (5 nm)/EB23 (20 nm)/PPF (5 nm)/TPBi (50 nm)/LiF (1 nm)/Al (120 nm) |
D2EB23 | ITO/HAT-CN (5 nm)/NPB (30 nm)/mCP (5 nm)/PPF:30 wt% EB23 (20 nm)/ PPF (5 nm)/TPBi (50 nm)/LiF (1 nm)/Al (120 nm) |
D1EB24 | ITO/HAT-CN (5 nm)/NPB (30 nm)/mCP (5 nm)/EB24 (20 nm)/PPF (5 nm)/TPBi (50 nm)/LiF (1 nm)/Al (120 nm) |
D2EB24 | ITO/HAT-CN (5 nm)/NPB (30 nm)/mCP (5 nm)/PPF:30 wt% EB24 (20 nm)/PPF (5 nm)/ TPBi (50 nm)/LiF (1 nm)/Al (120 nm) |
D1EB25 | ITO/HAT-CN (5 nm)/NPB (30 nm)/mCP (5 nm)/EB25 (20 nm)/PPF (5 nm)/TPBi (50 nm)/LiF (1 nm)/Al (120 nm) |
D2EB25 | ITO/HAT-CN (5 nm)/NPB (30 nm)/mCP (5 nm)/PPF:30 wt% EB25 (20 nm)/PPF (5 nm)/ TPBi (50 nm)/LiF (1 nm)/Al (120 nm) |
D1EB26 | ITO/PEDOT:PSS (25 nm)/EB26 (25 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al (150 nm) |
D2EB26 | ITO/PEDOT:PSS (25 nm)/G3-tCbz:30 wt% EB26 (25 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al (150 nm) |
D1EB27 | ITO/PEDOT:PSS (25 nm)/EB27 (25 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al (150 nm) |
D1EB27 | ITO/PEDOT:PSS (25 nm)/G3-tCbz:30 wt% EB27 (25 nm)/TmPyPB (55 nm)/LiF (1 nm)/Al (150 nm) |
Device | Emitter | Colour | VON, V | LMAX, cd/m2 | CE, cd/A | PE, lm/W | EQE, % | CIE (x, y) |
---|---|---|---|---|---|---|---|---|
DEB3 | EB3 | Blue | 4.3 | 510 | 9.30 | – | 8.10 | (0.16, 0.14) |
D1EB4 | EB4 | Blue | 3.2 | 5516 | – | 6.90 | 4.00 | (0.15, 0.26) |
D2EB4 | EB4/Ir(ppy)2(acac)/Ir(bt)2(dipba) | White | 2.7 | 25,540 | 48.6 | – | 25.6 | (0.41, 0.46) |
DEB5 | EB5 | Blue | 4.4 | 3900 | 25.5 | – | 14.3 | (0.17, 0.27) |
DEB6 | EB6 | Green | – | – | – | – | 10.4 | – |
DEB8 | EB8 | Blue | – | – | – | – | 8.90 | (0.14, 0.16) |
DEB9 | EB9 | Green | 7.5 | 114 | 11.8 | 9.30 | 1.93 | (0.37, 0.57) |
DEB10 | EB10 | Green | 2.6 | 45,300 | 59.0 | 18.0 | (0.26, 0.55) | |
DEB11 | EB11 | Green | 4.4 | 7173 | 69.3 | – | 22.5 | (0.29, 0.54) |
DEB12 | EB12 | Green | 5.3 | 3524 | 11.0 | 6.90 | 3.90 | (0.28, 0.51) |
DEB14 | EB14 | Green | 3.2 | 86,100 | 35.9 | – | 10.7 | (0.37, 0.58) |
DEB15 | EB15 | Red | 2.8 | 50,820 | 11.1 | – | 4.20 | (0.58, 0.36) |
DEB16 | EB16 | Yellow | 3.6 | 57,120 | 20.1 | – | 6.90 | (0.49, 0.51) |
DEB16/EB5 | EB16/EB5 | White | 5.0 | 9800 | 16.4 | – | 6.70 | (0.32, 0,39) |
DEB17 | EB17 | Blue | 3.9 | 10,005 | 4.80 | 2.70 | 2.40 | (0.15, 0.28) |
DEB18 | EB18 | Green | 3.8 | 7354 | 10.8 | 4.70 | 2.70 | (0.33, 0.51) |
DEB19 | EB19 | Blue | 3.9 | 1387 | 2.74 | 2.20 | 1.69 | (0.16, 0.21) |
DEB20 | EB20 | Green | 4.3 | 17,007 | 64.0 | – | 30.8 | (0.31, 0.53) |
DEB21 | EB21 | Green | 5.4 | 16,883 | 73.5 | – | 18.8 | (0.33, 0.48) |
DEB22 | EB22 | Blue | 3.6 | 2021 | – | – | 11.4 | (0.17, 0.31) |
D1EB23 | EB23 | Green | 3.2 | 31,713 | 53.9 | 48.9 | 18.6 | (0.24, 0.53) |
D2EB23 | EB23 | Green | 3.0 | 48,712 | 90.9 | 91.2 | 30.3 | (0.25, 0.54) |
D1EB24 | EB24 | Green | 3.6 | 30,283 | 46.8 | 37.5 | 17.1 | (0.22, 0.46) |
D2EB24 | EB24 | Green | 3.2 | 48,515 | 87.5 | 85.9 | 32.2 | (0.22, 0.49) |
D1EB25 | EB25 | Green | 3.8 | 25,616 | 49.1 | 35.7 | 18.1 | (0.22, 0.50) |
D2EB25 | EB25 | Green | 3.2 | 48,153 | 79.8 | 75.9 | 28.4 | (0.23, 0.50) |
D1EB25 | EB25 | Yellow | 2.6 | >10,000 | 17.8 | 20.0 | 5.90 | (0.41, 0.54) |
D2EB25 | EB25 | Yellow-green | 2.8 | >10,000 | 48.1 | 47.8 | 15.9 | (0.37, 0.53) |
D1EB26 | EB26 | Yellow-green | 2.7 | >10,000 | 18.9 | 19.2 | 6.00 | (0.38, 0.55) |
D2EB26 | EB26 | Green | 2.8 | >10,000 | 46.4 | 47.2 | 15.4 | (0.34, 0.53) |
TM, °C | TG, °C | TD, °C | Eg, eV | ES, eV | ET, eV | ΔEST, eV | HOMO, eV | LUMO, eV | ΦPL Film, % | ΦPL Sol., % | RD, % | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
EC1 | – | – | 433 | 2.30 | 2.75 | 2.71 | 0.04 | −5.36 | −3.06 | 57 | – | 78.9 |
EC2 | – | 72 | 309 | 2.76 | 2.82 | 2.72 | 0.10 | −5.37 | −2.61 | – | – | – |
EC3 | – | – | 417 | 2.53 | 2.67 | 2.66 | 0.013 | −5.35 | −2.82 | 90 | 28 | 53.3 |
EC4 | – | – | 451 | 2.58 | 2.71 | 2.66 | 0.05 | −5.36 | −2.78 | 86 | 25 | 33.0 |
EC5 | – | – | 404 | 2.36 | 2.81 | 2.71 | 0.10 | −5.35 | −2.99 | 46.7 | 1.2 | 76.4 |
EC6 | – | – | 414 | 2.30 | 2.69 | 2.65 | 0.04 | −5.36 | −3.06 | 66.8 | 3.4 | 89.7 |
EC7 | – | – | 416 | 2.25 | 2.59 | 2.56 | 0.03 | −5.34 | −3.09 | 53.3 | 0.5 | 83.3 |
EC8 | – | – | 391 | 2.34 | 2.58 | 2.52 | 0.06 | −5.26 | −2.92 | 33.2 | 0.6 | 75.3 |
EC9 | – | – | 400 | 2.26 | 2.57 | 2.54 | 0.03 | −5.25 | −2.99 | 48.4 | 0.9 | 88.2 |
EC10 | – | – | 403 | 2.19 | 2.41 | 2.38 | 0.03 | −5.23 | −3.04 | 35.3 | 0.8 | 82.7 |
EC11 | 190 | 104 | 416 | 2.88 | 2.85 | 2.79 | 0.06 | −5.92 | −3.04 | 76 | 17 | – |
Device | Device Architecture |
---|---|
DEC1 | ITO/PEDOT:PSS (40 nm)/EC1 (40 nm)/TPBi (30 nm)/Cs2CO3 (2 nm)/Al (100 nm) |
DEC2 | ITO/HAT-CN (20 nm)/TAPC (30 nm)/CBP:20 wt% EC2 (25 nm)/TmPyPb (40 nm)/LiF (1 nm)/Al (150 nm) |
D1EC3 | ITO/HAT-CN (5 nm)/NPB (30 nm)/mCP (5 nm)/EC3 (20 nm)/PPF (5 nm)/TPBi (50 nm)/LiF (1 nm)/Al (120 nm) |
D2EC3 | ITO/HAT-CN (5 nm)/NPB (30 nm)/mCP (5 nm)/PPF:20 wt% EC3 (20 nm)/ PPF (5 nm)/TPBi (50 nm)/LiF (1 nm)/Al (120 nm) |
D1EC4 | ITO/HAT-CN (5 nm)/NPB (30 nm)/mCP (5 nm)/EC4 (20 nm)/PPF (5 nm)/TPBi (50 nm)/LiF (1 nm)/Al (120 nm) |
D2EC4 | ITO/HAT-CN (5 nm)/NPB (30 nm)/mCP (5 nm)/PPF:20 wt% EC4 (20 nm)/ PPF (5 nm)/TPBi (50 nm)/LiF (1 nm)/Al (120 nm) |
DEC5 | ITO/PEDOT:PSS (40 nm)/EC5 (40 nm)/TPBi (30 nm)/Cs2CO3 (2 nm)/Al (100 nm) |
DEC6 | ITO/PEDOT:PSS (40 nm)/EC6 (40 nm)/TPBi (30 nm)/Cs2CO3 (2 nm)/Al (100 nm) |
DEC7 | ITO/PEDOT:PSS (40 nm)/EC7 (40 nm)/TPBi (30 nm)/Cs2CO3 (2 nm)/Al (100 nm) |
DEC8 | ITO/PEDOT:PSS (40 nm)/EC8 (40 nm)/TPBi (30 nm)/Cs2CO3 (2 nm)/Al (100 nm) |
DEC9 | ITO/PEDOT:PSS (40 nm)/EC9 (40 nm)/TPBi (30 nm)/Cs2CO3 (2 nm)/Al (100 nm) |
DEC10 | ITO/PEDOT:PSS (40 nm)/EC10 (40 nm)/TPBi (30 nm)/Cs2CO3 (2 nm)/Al (100 nm) |
DEC11 | ITO/MoO3 (1.2 nm)/NPB (44 nm)/TCTA (4 nm)/mCP (4 nm)/mCP:7%wt EC11 (24 nm)/ TSPO1 (4 nm)/TPBi (40 nm)/LiF (1.2 nm)/Al (400 nm) |
Device | Emitter | Colour | VON, V | LMAX, cd/m2 | CE, cd/A | PE, lm/W | EQE, % | CIE (x, y) |
---|---|---|---|---|---|---|---|---|
DEC1 | EC1 | Green | 3.8 | 1738 | 35.5 | 22.3 | 13.3 | (0.29, 0.48) |
DEC2 | EC2 | Green | 3.6 | 116,000 | 61.8 | 40.4 | 19.7 | (0.26, 0.56) |
D1EC3 | EC3 | Green | 3.2 | 78,540 | 76.9 | 71.0 | 29.0 | (0.21, 0.47) |
D2EC3 | EC3 | Green | 3.2 | 71,150 | 82.9 | 70.1 | 33.3 | (0.20, 0.42) |
D1EC4 | EC4 | Green | 3.0 | 54,450 | 53.2 | 51.5 | 21.6 | (0.20, 0.42) |
D2EC4 | EC4 | Green | 3.2 | 42,550 | 77.2 | 65.0 | 32.9 | (0.19, 0.38) |
DEC5 | EC5 | Green | 4.5 | 2599 | 14.3 | 6.40 | 6.70 | (0.28, 0.47) |
DEC6 | EC6 | Green | 4.2 | 6726 | 35.4 | 15.9 | 11.4 | (0.34, 0.51) |
DEC7 | EC7 | Green | 4.3 | 3832 | 23.8 | 10.7 | 9.10 | (0.39, 0.56) |
DEC8 | EC8 | Yellow | 4.8 | 3658 | 12.4 | 4.30 | 4.80 | (0.41, 0.55) |
DEC9 | EC9 | Orange | 4.6 | 8085 | 21.6 | 6.80 | 9.40 | (0.47, 0.51) |
DEC10 | EC10 | Orange | 4.7 | 6551 | 14.5 | 4.20 | 6.90 | (0.53, 0.46) |
DEC11 | EC11 | Green | 4.2 | 15,600 | 57.8 | 38.8 | 22.2 | (0.18, 0.41) |
TM, °C | TG, °C | TD, °C | Eg, eV | ES, eV | ET, eV | ΔEST, eV | HOMO, eV | LUMO, eV | ΦPL Film, % | ΦPL Sol., % | RD, % | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ED1 | – | 218 | – | 2.73 | 2.80 | 2.72 | 0.08 | −5.82 | −3.09 | 74.0 | 49.0 | 45.9 |
ED2 | – | – | – | 2.74 | 2.82 | 2.73 | 0.09 | −5.72 | −2.98 | 34.0 | 48.0 | 17.6 |
ED3 | – | – | – | 2.67 | 2.65 | 2.54 | 0.11 | −5.43 | −2.76 | 17.0 | 74.0 | 5.90 |
ED4 | – | – | – | 2.92 | 2.83 | 2.69 | 0.14 | −5.81 | −2.89 | 41.0 | 32.0 | 17.1 |
ED5 | – | – | – | 2.96 | 2.84 | 2.72 | 0.12 | −5.87 | −2.91 | 33.4 | 23.6 | 40.1 |
ED6 | – | – | – | 3.06 | 2.84 | 2.74 | 0.10 | −5.73 | −2.67 | 21.1 | 14.7 | 64.5 |
ED7 | 313 | 283 | 471 | 2.58 | 2.69 | 2.58 | 0.11 | −5.12 | −2.54 | 77.0 | – | – |
ED8 | 367 | 289 | 507 | 2.56 | 2.84 | 2.69 | 0.15 | −5.25 | −2.69 | 75.0 | – | – |
ED9 | – | – | 493 | 3.01 | – | – | 0.13 | −5.04 | −2.03 | 21.7 | – | 18.4 |
ED10 | – | – | 522 | 3.12 | – | – | 0.11 | −5.05 | −2.17 | 36.5 | – | 9.00 |
Device | Device Architecture |
---|---|
D1ED1 | ITO/PEDOT:PSS (40 nm)/ED1 (40 nm)/TPBI (30 nm)/Cs2CO3 (2 nm)/Al (120 nm) |
D2ED1 | ITO/PEDOT:PSS (50 nm)/PVK (20 nm)/ED1 (25 nm)/SPPO13 (40 nm)/LiF (0.5 nm)/Al (80 nm) |
DED2 | ITO/PEDOT:PSS (50 nm)/PVK (20 nm)/ED2 (25 nm)/SPPO13 (40 nm)/LiF (0.5 nm)/Al (80 nm) |
DED3 | ITO/PEDOT:PSS (50 nm)/PVK (20 nm)/ED3 (25 nm)/SPPO13 (40 nm)/LiF (0.5 nm)/Al (80 nm) |
DED4 | ITO/PEDOT:PSS (50 nm)/PVK (20 nm)/ED4 (25 nm)/SPPO13 (40 nm)/LiF (0.5 nm)/Al (80 nm) |
DED5 | ITO/PEDOT:PSS (70 nm)/PVK (20 nm)/ED5 (30 nm)/TPBi (40 nm)/Ca (10 nm)/Al (80 nm) |
DED6 | ITO/PEDOT:PSS (70 nm)/PVK (20 nm)/ED6 (30 nm)/TPBi (40 nm)/Ca (10 nm)/Al (80 nm) |
DED7 | ITO/PEDOT:PSS (30 nm)/ED7 (70 nm)/TPBi (40 nm)/Liq (2 nm)/Al |
DED8 | ITO/PEDOT:PSS (30 nm)/ED8 (70 nm)/TPBi (40 nm)/Liq (2 nm)/Al |
D1ED9 | ITO/TAPC (30 nm)/mCP (10 nm)/ED9 (20 nm)/DPEPO (30 nm)/DPEPO (10 nm) /TmPyPB (40 nm)/LiF/Al |
D2ED9 | ITO/TAPC (30 nm)/mCP (10 nm)/DPEPO:30 wt% ED9 (20 nm)/DPEPO (30 nm)/DPEPO (10 nm) /TmPyPB (40 nm)/LiF/Al |
D1ED10 | ITO/TAPC (30 nm)/mCP (10 nm)/ED10 (20 nm)/DPEPO (30 nm)/DPEPO (10 nm)/ TmPyPB (40 nm)/LiF/Al |
D2ED10 | ITO/TAPC (30 nm)/mCP (10 nm)/DPEPO:30 wt% ED10 (20 nm)/DPEPO (30 nm)/DPEPO (10 nm)/ TmPyPB (40 nm)/LiF/Al |
Device | Emitter | Colour | VON, V | LMAX, cd/m2 | CE, cd/A | PE, lm/W | EQE, % | CIE (x, y) |
---|---|---|---|---|---|---|---|---|
D1ED1 | ED1 | Green | 4.5 | 4200 | 9.20 | – | 4.30 | (0.26, 0.46) |
D2ED1 | ED1 | Green | 2.7 | 4639 | 46.6 | 40.7 | 17.0 | (0.27, 0.52) |
DED2 | ED2 | Green | 2.6 | 661 | 23.5 | 25.0 | 9.00 | (0.28, 0.48) |
DED3 | ED3 | Yellow | 2.5 | 1017 | 17.7 | 19.0 | 6.40 | (0.44, 0.51) |
DED4 | ED4 | Green | 2.7 | 965 | 22.7 | 20.0 | 8.80 | (0.30, 0.48) |
DED5 | ED5 | Green | 3.4 | – | 14.0 | 11.5 | 5.70 | (0.26, 0.48) |
DED6 | ED6 | Green | 3.7 | – | 8.70 | 6.60 | 3.60 | (0.28, 0.43) |
DED7 | ED7 | Green-yellow | 4.8 | >10,000 | – | – | 12.0 | (0.38, 0.56) |
DED8 | ED8 | Green | 7.7 | 2512 | – | – | 5.20 | (0.32, 0.51) |
D1ED9 | ED9 | Blue | 4.4 | 1290 | 9.70 | 6.10 | 4.20 | (0.19, 0.36) |
D2ED9 | ED9 | Blue | 3.0 | 2189 | 28.5 | 24.9 | 13.4 | (0.18, 0.33) |
D1ED10 | ED10 | Green | 4.4 | 5949 | 24.0 | 15.6 | 8.50 | (0.26, 0.50) |
D2ED10 | ED10 | Green-blue | 3.0 | 3867 | 44.4 | 42.8 | 18.9 | (0.20, 0.38) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blazevicius, D.; Grigalevicius, S. A Review of Benzophenone-Based Derivatives for Organic Light-Emitting Diodes. Nanomaterials 2024, 14, 356. https://doi.org/10.3390/nano14040356
Blazevicius D, Grigalevicius S. A Review of Benzophenone-Based Derivatives for Organic Light-Emitting Diodes. Nanomaterials. 2024; 14(4):356. https://doi.org/10.3390/nano14040356
Chicago/Turabian StyleBlazevicius, Dovydas, and Saulius Grigalevicius. 2024. "A Review of Benzophenone-Based Derivatives for Organic Light-Emitting Diodes" Nanomaterials 14, no. 4: 356. https://doi.org/10.3390/nano14040356
APA StyleBlazevicius, D., & Grigalevicius, S. (2024). A Review of Benzophenone-Based Derivatives for Organic Light-Emitting Diodes. Nanomaterials, 14(4), 356. https://doi.org/10.3390/nano14040356