Quarter-Wave Plate Metasurfaces for Generating Multi-Channel Vortex Beams
Abstract
:1. Introduction
2. Principles of the Metasurface Design
2.1. Overview of Principle
2.2. The Transmitted Light Field of the Meta-Atoms
3. Simulation Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef]
- Ng, J.; Lin, Z.; Chan, C.T. Theory of Optical Trapping by an Optical Vortex Beam. Phys. Rev. Lett. 2010, 104, 103601. [Google Scholar] [CrossRef]
- Willner, A.E.; Huang, H.; Yan, Y.; Ren, Y.; Ahmed, N.; Xie, G.; Bao, C.; Li, L.; Cao, Y.; Zhao, Z.; et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics 2015, 7, 66–106. [Google Scholar] [CrossRef]
- Erhard, M.; Fickler, R.; Krenn, M.; Zeilinger, A. Twisted photons: New quantum perspectives in high dimensions. Light: Sci. Appl. 2017, 7, 17146. [Google Scholar] [CrossRef]
- Liu, A.; Rui, G.; Ren, X.; Zhan, Q.; Guo, G.; Guo, G. Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens. Opt. Express 2012, 20, 24151–24159. [Google Scholar] [CrossRef] [PubMed]
- Ostrovsky, A.S.; Rickenstorff-Parrao, C.; Arrizón, V. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator. Opt. Lett. 2013, 38, 534–536. [Google Scholar] [CrossRef]
- Sueda, K.; Miyaji, G.; Miyanaga, N.; Nakatsuka, M. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express 2004, 12, 3548–3553. [Google Scholar] [CrossRef] [PubMed]
- Cardano, F.; Karimi, E.; Slussarenko, S.; Marrucci, L.; de Lisio, C.; Santamato, E. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt. 2012, 51, C1–C6. [Google Scholar] [CrossRef]
- Dorrah, A.H.; Rubin, N.A.; Zaidi, A.; Tamagnone, M.; Capasso, F. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photon. 2021, 15, 287–296. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, C.; Meng, C.; Bozhevolnyi, S.I.; Ding, F. Functional Metasurface Quarter-Wave Plates for Simultaneous Polarization Conversion and Beam Steering. ACS Nano 2021, 15, 18532–18540. [Google Scholar] [CrossRef]
- Ding, F.; Chang, B.; Wei, Q.; Huang, L.; Guan, X.; Bozhevolnyi, S.I. Versatile Polarization Generation and Manipulation Using Dielectric Metasurfaces. Laser Photon. Rev. 2020, 14, 2000116. [Google Scholar] [CrossRef]
- Cai, T.; Wang, G.; Tang, S.; Xu, H.; Duan, J.; Guo, H.; Guan, F.; Sun, S.; He, Q.; Zhou, L. High-Efficiency and Full-Space Manipulation of Electromagnetic Wave Fronts with Metasurfaces. Phys. Rev. Appl. 2017, 8, 034033. [Google Scholar] [CrossRef]
- Neshev, D.N.; Miroshnichenko, A.E. Enabling smart vision with metasurfaces. Nat. Photon. 2022, 17, 26–35. [Google Scholar] [CrossRef]
- Gu, T.; Kim, H.J.; Rivero-Baleine, C.; Hu, J. Reconfigurable metasurfaces towards commercial success. Nat. Photon. 2022, 17, 48–58. [Google Scholar] [CrossRef]
- Ding, F.; Chen, Y.; Yang, Y.; Bozhevolnyi, S.I. Multifunctional Metamirrors for Broadband Focused Vector-Beam Generation. Adv. Opt. Mater. 2019, 7, 1900724. [Google Scholar] [CrossRef]
- Wang, E.; Shi, L.; Niu, J.; Hua, Y.; Li, H.; Zhu, X.; Xie, C.; Ye, T. Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments. Adv. Opt. Mater. 2019, 7, 1801415. [Google Scholar] [CrossRef]
- Devlin, R.C.; Ambrosio, A.; Rubin, N.A.; Mueller, J.B.; Capasso, F. Arbitrary spin to–orbital angular momentum conversion of light. Science 2017, 358, 896. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Faraon, A. Advances in optical metalenses. Nat. Photon. 2022, 17, 16–25. [Google Scholar] [CrossRef]
- Balthasar Mueller, J.P.; Rubin, N.A.; Devlin, R.C.; Groever, B.; Capasso, F. Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization. Phys. Rev. Lett. 2017, 118, 113901. [Google Scholar] [CrossRef] [PubMed]
- Vogliardi, A.; Ruffato, G.; Dal Zilio, S.; Bonaldo, D.; Romanato, F. Dual-functional metalenses for the polarization-controlled generation of focalized vector beams in the telecom infrared. Sci. Rep. 2023, 13, 10327. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, S.; Pu, M.; He, Q.; Jin, J.; Xu, M.; Zhang, Y.; Gao, P.; Luo, X. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci. Appl. 2021, 10, 63. [Google Scholar] [CrossRef]
- Liu, X.; Kan, Y.; Kumar, S.; Kulikova, L.F.; Davydov, V.A.; Agafonov, V.N.; Zhao, C.; Bozhevolnyi, S.I. Ultracompact Single-Photon Sources of Linearly Polarized Vortex Beams. Adv. Mater. 2023, 36, 2304495. [Google Scholar] [CrossRef]
- Liu, M.; Huo, P.; Zhu, W.; Zhang, C.; Zhang, S.; Song, M.; Zhang, S.; Zhou, Q.; Chen, L.; Lezec, H.J.; et al. Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nat. Commun. 2021, 12, 2230. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, K.; Ratni, B.; Song, Q.; Ding, X.; Wu, Q.; Burokur, S.N.; Genevet, P. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat. Commun. 2020, 11, 4186. [Google Scholar] [CrossRef]
- Deng, Y.; Cai, Z.; Ding, Y.; Bozhevolnyi, S.I.; Ding, F. Recent progress in metasurface-enabled optical waveplates. Nanophotonics 2022, 11, 2219–2244. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Zhang, Y.Q.; Zhang, R.R.; Ren, X.R.; Zhan, Z.J.; Gu, M.N.; Sun, R.; Liu, C.X.; Cheng, C.F. Generation of vector beams of Bell-like states by manipulating vector vortex modes with plasmonic metasurfaces. Opt. Lett. 2021, 46, 528–531. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Tang, S.; Zheng, Z.; Ding, F. Multifunctional all-dielectric metasurface quarter-wave plates for polarization conversion and wavefront shaping. Opt. Lett. 2022, 47, 2478–2481. [Google Scholar] [CrossRef] [PubMed]
- Abouelatta, M.A.A.; Hameed, M.F.O.; Obayya, S.S.A. Highly efficient ultrathin broadband quarter-waveplate based on plasmonic metasurface. Optik 2021, 239, 166770. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, J.; Yue, W.; Li, Z.; Choi, D.-Y.; Li, Y.; Li, H.; Lee, S.-S.; Chen, S.; Gao, S. Twofold optical display and encryption of binary and grayscale images with a wavelength-multiplexed metasurface. Nanophotonics 2023, 12, 3747–3756. [Google Scholar] [CrossRef]
- Rubin, N.A.; Shi, Z.; Capasso, F. Polarization in diffractive optics and metasurfaces. Adv. Opt. Photonics 2022, 13, 836–970. [Google Scholar] [CrossRef]
unit/N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
φx (π) | −0.00669 | 0.23417 | 0.47558 | 0.73053 | 1.02955 | 1.22179 | 1.48022 | 1.75448 |
φy (π) | 0.47558 | 0.73053 | −0.00669 | 0.23417 | 1.53309 | 1.75448 | 1.99000 | 1.22179 |
Txx | 0.98469 | 0.92895 | 0.94721 | 0.97474 | 0.96961 | 0.98932 | 1.00000 | 0.94512 |
Tyy | 0.94721 | 0.97474 | 0.98469 | 0.92895 | 0.92895 | 0.94512 | 0.94373 | 0.98327 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Gu, M.; Cui, G.; Zhou, Y.; Ma, T.; Zhao, K.; Li, Y.; Liu, C.; Cheng, C.; Ma, L. Quarter-Wave Plate Metasurfaces for Generating Multi-Channel Vortex Beams. Nanomaterials 2024, 14, 374. https://doi.org/10.3390/nano14040374
Zhang Z, Gu M, Cui G, Zhou Y, Ma T, Zhao K, Li Y, Liu C, Cheng C, Ma L. Quarter-Wave Plate Metasurfaces for Generating Multi-Channel Vortex Beams. Nanomaterials. 2024; 14(4):374. https://doi.org/10.3390/nano14040374
Chicago/Turabian StyleZhang, Ziheng, Manna Gu, Guosen Cui, Yuxiang Zhou, Teng Ma, Kaixin Zhao, Yunxiao Li, Chunxiang Liu, Chuanfu Cheng, and Li Ma. 2024. "Quarter-Wave Plate Metasurfaces for Generating Multi-Channel Vortex Beams" Nanomaterials 14, no. 4: 374. https://doi.org/10.3390/nano14040374
APA StyleZhang, Z., Gu, M., Cui, G., Zhou, Y., Ma, T., Zhao, K., Li, Y., Liu, C., Cheng, C., & Ma, L. (2024). Quarter-Wave Plate Metasurfaces for Generating Multi-Channel Vortex Beams. Nanomaterials, 14(4), 374. https://doi.org/10.3390/nano14040374