Developments in Atomistic and Nano Structure Evolution Mechanisms of Molten Slag Using Atomistic Simulation Methods
Abstract
:1. Introduction
2. The Atomic Simulation Method
2.1. Classic Molecular Dynamic
2.2. Ab Initio Molecular Dynamics
2.3. Machine Learning Molecular Dynamics
3. The Properties of Molten Slag
4. The Evolution of Molten Slag’s Microstructure
4.1. The Effect of Acid Oxides
4.2. The Effect of Basic Oxides
4.3. The Effect of Amphoteric Oxide
5. Conclusions and Prospective
- (1)
- Acidic oxides, represented by SiO2 and P2O5, mainly form [SiO4]4− tetrahedra and [PO4]5− tetrahedra in molten slag. The [SiO4]4− tetrahedra and [PO4]5− tetrahedra are interconnected with other polyhedral structures, leading to the formation of complex chain-like or network structures. Acidic oxides often increase the viscosity, liquidus temperature, and enthalpy of molten slag by increasing the degree of polymerization of the its atomic structure.
- (2)
- Basic oxides, represented by CaO and MgO, dissociate into free cations and free oxygen ions in the molten slag. The free cations of basic oxides undergo dynamic equilibrium vibrations around polyhedral structures to compensate for the negative charge overflow. Meanwhile, cations and oxygen ions destroy the network structures of the system during migration and interaction, thereby improving the properties of the melt.
- (3)
- Amphoteric oxides, represented by Al2O3, possess both acidic and basic oxide properties. When the content of acidic oxides is high, they tend to exhibit the property of basic oxides destroying the network structure. When the content of acidic oxides is low, they generally exhibit the property of forming acidic oxide network structures.
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, T.; Wang, Q.; Yu, C.F.; He, S.P. Structural and viscosity properties of CaO–SiO2–Al2O3–FeO slags based on molecular dynamic simulation. J. Non Cryst. Solids 2016, 450, 23–31. [Google Scholar] [CrossRef]
- Ozbay, E.; Erdemir, M.; Durmus, H.l. Utilization and efficiency of ground granulated blast furnace slag on concrete properties–A review. Constr. Build. Mater. 2016, 105, 423–434. [Google Scholar] [CrossRef]
- Taylor, R.; Richardson, I.; Brydson, R. Composition and microstructure of 20-year-old ordinary Portland cement ground granulated blast furnace slag blends containing 0 to 100% slag. Cem. Concr. Res. 2010, 40, 971–983. [Google Scholar] [CrossRef]
- Karamanova, E.; Avdeev, G.; Karamanov, A. Ceramics from blast furnace slag, kaolin and quartz. J. Eur. Ceram. Soc. 2011, 31, 989–998. [Google Scholar] [CrossRef]
- Greeley, R.; Schneid, B.D. Magma generation on Mars: Amounts, rates, and comparisons with Earth, Moon, and Venus. Science 1991, 254, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.-M.; Lv, X.-W.; Li, Z.-S. Physicochemical properties and structure of titania-containing metallurgical slags: A review. J. Iron Steel Res. Int. 2022, 29, 187–206. [Google Scholar] [CrossRef]
- Waseda, Y.; Toguri, J.M. The Structure and Properties of Oxide Melts: Application of Basic Science to Metallurgical Processing; World Scientific: London, UK, 1998. [Google Scholar]
- Liu, W.; Pang, Z.; Wang, J.; Zuo, H.; Xue, Q. Investigation of viscosity and structure of CaO–SiO2–MgO–Al2O3–BaO–B2O3 slag melt. Ceram. Int. 2022, 48, 17123–17130. [Google Scholar] [CrossRef]
- Qiu, G.; Miao, D.; Wei, X.; Bai, C.; Li, X. Effect of MgO/Al2O3 and CaO/SiO2 on the Metallurgical Properties of CaO–SiO2–Al2O3–MgO–TiO2 Slag. J. Non Cryst. Solids 2022, 585, 121545. [Google Scholar] [CrossRef]
- Yao, L.; Ren, S.; Wang, X.; Liu, Q.; Dong, L.; Yang, J.; Liu, J. Effect of Al2O3, MgO, and CaO/SiO2 on viscosity of high alumina blast furnace slag. Steel Res. Int. 2016, 87, 241–249. [Google Scholar] [CrossRef]
- Chen, Y.; Pan, W.; Jia, B.; Wang, Q.; Zhang, X.; Wang, Q.; He, S. Effects of the amphoteric behavior of Al2O3 on the structure and properties of CaO–SiO2–Al2O3 melts by molecular dynamics. J. Non Cryst. Solids 2021, 552, 120435. [Google Scholar] [CrossRef]
- Pang, Z.; Lv, X.; Jiang, Y.; Ling, J.; Yan, Z. Blast furnace ironmaking process with super-high TiO2 in the slag: Viscosity and melting properties of the slag. Metall. Mater. Trans. B 2020, 51, 722–731. [Google Scholar] [CrossRef]
- Yan, H.-j.; Liu, L.; Zhuang, J.-c.; Zhou, P.; Zhou, C.Q. Molecular Dynamics Simulation of Carbon Effect on the Thermal Physical Properties of the Molten Iron. ISIJ Int. 2018, 59, 221–226. [Google Scholar] [CrossRef]
- Yan, W.; Chen, W.; Yang, Y.; Lippold, C.; McLean, A. Evaluation of B2O3 as replacement for CaF2 in CaO–Al2O3 based mould flux. Ironmak. Steelmak. 2016, 43, 316–323. [Google Scholar] [CrossRef]
- Kim, G.H.; Sohn, I. Effect of CaF2, B2O3 and the CaO/SiO2 mass ratio on the viscosity and structure of B2O3 containing calcium silicate based melts. J. Am. Ceram. Soc. 2019, 102, 6575–6590. [Google Scholar] [CrossRef]
- Liao, J.; Li, J.; Wang, X.; Zhang, Z. Influence of TiO2 and basicity on viscosity of Ti bearing slag. Ironmak. Steelmak. 2012, 39, 133–139. [Google Scholar] [CrossRef]
- Park, H.; Park, J.Y.; Kim, G.H.; Sohn, I. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags. Steel Res. Int. 2012, 83, 150–156. [Google Scholar] [CrossRef]
- Shankar, A.; Görnerup, M.; Lahiri, A.; Seetharaman, S. Estimation of viscosity for blast furnace type slags. Ironmak. Steelmak. 2007, 34, 477–481. [Google Scholar] [CrossRef]
- Lv, X.; Lv, X.; Qiu, J.; Liu, M. Viscosity and Structure Evolution of Slag in Ferronickel Smelting Process from Laterite. J. Min. Metall. Sect. B Metall. 2017, 53, 147–154. [Google Scholar] [CrossRef]
- Min, D.J.; Tsukihashi, F. Recent advances in understanding physical properties of metallurgical slags. Met. Mater. Int. 2017, 23, 1–19. [Google Scholar] [CrossRef]
- Zhou, C.; Li, J.; Wang, S.; Zhao, J.; Ai, L.; Chen, Q.; Chen, Q.; Zhao, D. Development of Molecular Dynamics and Research Progress in the Study of Slag. Materials 2023, 16, 5373. [Google Scholar] [CrossRef]
- Finnis, M.; Sinclair, J. A simple empirical N-body potential for transition metals. Philos. Mag. A 1984, 50, 45–55. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed]
- Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, K.M.; Ferguson, D.M.; Spellmeyer, D.C.; Fox, T.; Caldwell, J.W.; Kollman, P.A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. [Google Scholar] [CrossRef]
- Chenoweth, K.; Van Duin, A.C.; Goddard, W.A. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 2008, 112, 1040–1053. [Google Scholar] [CrossRef] [PubMed]
- Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991. [Google Scholar] [CrossRef] [PubMed]
- Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Hoang, V.V. Molecular dynamics simulation of amorphous SiO2 nanoparticles. J. Phys. Chem. B 2007, 111, 12649–12656. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.D. Study of the effect of sizes on the structural properties of SiO2 glass by molecular dynamics simulations. J. Non Cryst. Solids 2013, 376, 50–60. [Google Scholar] [CrossRef]
- Li, K.; Bouhadja, M.; Khanna, R.; Zhang, J.; Liu, Z.; Zhang, Y.; Yang, T.; Sahajwalla, V.; Yang, Y.; Barati, M. Influence of SiO2 reduction on the local structural order and fluidity of molten coke ash in the high temperature zone of a blast furnace. A molecular dynamics simulation investigation. Fuel 2016, 186, 561–570. [Google Scholar] [CrossRef]
- Liu, Y.; Bai, C.; Lv, X.; Wei, R. Molecular dynamics simulation on the influence of Al2O3 on the slag structure at 1873 K. Mater. Today Proc. 2015, 2, S453–S459. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Q.; Yao, T.; He, S. Molecular dynamics simulations of the structural properties of Al2O3-based binary systems. J. Non Cryst. Solids 2016, 435, 17–26. [Google Scholar] [CrossRef]
- Yuelin, Q.; Hao, L.; Yanhua, Y. Structure evolution of blast furnace slag with high Al2O3 Content and 5 mass% TiO2 via molecular dynamics simulation and fourier transform infrared spectroscopy. Metall. Res. Technol. 2018, 115, 113. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, J.; Qiao, X.; Cao, X.; Zhang, C.; Xu, G.; Liu, Y.; Peng, S.; Han, G. Ionic self-diffusion of Na2O–Al2O3–SiO2 glasses from molecular dynamics simulations. J. Non Cryst. Solids 2020, 527, 119734. [Google Scholar] [CrossRef]
- Bi, Z.; Li, K.; Jiang, C.; Zhang, J.; Ma, S. Effects of amphoteric oxide (Al2O3 and B2O3) on the structure and properties of SiO2–CaO melts by molecular dynamics simulation. J. Non Cryst. Solids 2021, 559, 120687. [Google Scholar] [CrossRef]
- Xuan, W.; Zhang, Y. Exploration of the amphoteric transition of Al2O3 on melt structure and viscosity of silicate slag. Ceram. Int. 2023, 49, 25815–25822. [Google Scholar] [CrossRef]
- Bi, Z.; Li, K.; Jiang, C.; Zhang, J.; Ma, S.; Sun, M.; Wang, Z.; Li, H. Performance and transition mechanism from acidity to basicity of amphoteric oxides (Al2O3 and B2O3) in SiO2–CaO–Al2O3–B2O3 system: A molecular dynamics study. Ceram. Int. 2021, 47, 12252–12260. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Zhang, X.; Wang, Q.; Wang, Q.; He, S. Amphoteric behavior of component and microstructure feature on CaO-Al2O3-TiO2 ternary melt by molecular dynamics simulation. Comput. Mater. Sci. 2022, 205, 111223. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Y.; Kong, W.; Wang, Q.; He, Z.; Yang, X. Effect of Al2O3 on the molten slag microstructure information by molecular dynamics simulation and experimental analysis. J. Non Cryst. Solids 2022, 578, 121354. [Google Scholar] [CrossRef]
- Jiang, C.; Li, K.; Zhang, J.; Qin, Q.; Liu, Z.; Liang, W.; Sun, M.; Wang, Z. The effect of CaO (MgO) on the structure and properties of aluminosilicate system by molecular dynamics simulation. J. Mol. Liq. 2018, 268, 762–769. [Google Scholar] [CrossRef]
- Jiang, C.; Li, K.; Zhang, J.; Liu, Z.; Niu, L.; Liang, W.; Sun, M.; Ma, H.; Wang, Z. The effect of CaO and MgO on the structure and properties of coal ash in the blast furnace: A molecular dynamics simulation and thermodynamic calculation. Chem. Eng. Sci. 2019, 210, 115226. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Yang, S.; Liu, J.; Liu, W. Molecular dynamics study of structural properties of refining slag with various CaO/Al2O3 ratios. Minerals 2021, 11, 398. [Google Scholar] [CrossRef]
- Fan, H.; Wang, R.; Duan, H.; Chen, D.; Xu, Z. Structural and transport properties of TiO2–SiO2–MgO–CaO system through molecular dynamics simulations. J. Mol. Liq. 2021, 325, 115226. [Google Scholar] [CrossRef]
- Gao, L.; Liu, X.; Bai, J.; Kong, L.; Bai, Z.; Li, W. Structure and flow properties of coal ash slag using ring statistics and molecular dynamics simulation: Role of CaO/Na2O in SiO2–Al2O3–CaO–Na2O. Chem. Eng. Sci. 2021, 231, 116285. [Google Scholar] [CrossRef]
- Ma, S.; Li, K.; Zhang, J.; Jiang, C.; Bi, Z.; Sun, M.; Wang, Z.; Li, H. The effects of CaO and FeO on the structure and properties of aluminosilicate system: A molecular dynamics study. J. Mol. Liq. 2021, 325, 115106. [Google Scholar] [CrossRef]
- Gu, C.; Lyu, Z.; Bao, Y. Size-dependent dissolution behavior of CaO in the CaO–SiO2–FeO slag system: A molecular dynamics study. J. Mol. Liq. 2022, 367, 120488. [Google Scholar] [CrossRef]
- Diao, J.; Ke, Z.; Jiang, L.; Zhang, Z.; Zhang, T.; Xie, B. Structural properties of molten CaO–SiO2–P2O5–FeO system. High. Temp. Mater. Process. 2017, 36, 871–876. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, X.; Li, B.; Bai, C. Relationship between structure and viscosity of CaO–SiO2–MgO–30.00 wt% Al2O3 slag by molecular dynamics simulation with FT-IR and Raman spectroscopy. Ironmak. Steelmak. 2018, 45, 492–501. [Google Scholar] [CrossRef]
- Sadaf, S.; Wu, T.; Zhong, L.; Liao, Z.Y.; Wang, H.C. Effect of basicity on the structure, viscosity and crystallization of CaO–SiO2-B2O3 based mold fluxes. Metals 2020, 10, 1240. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, Z.; Zhang, Y.; Wang, C. Roles of MnO and MgO on structural and thermophysical properties of SiO2–MnO–MgO-B2O3 welding Fluxes: A molecular dynamics study. J. Mol. Liq. 2023, 386, 122501. [Google Scholar] [CrossRef]
- Jiang, C.; Li, K.; Zhang, J.; Qin, Q.; Liu, Z.; Sun, M.; Wang, Z.; Liang, W. Effect of MgO/Al2O3 ratio on the structure and properties of blast furnace slags: A molecular dynamics simulation. J. Non Cryst. Solids 2018, 502, 76–82. [Google Scholar] [CrossRef]
- Jiang, C.; Li, K.; Zhang, J.; Qin, Q.; Liu, Z.; Liang, W.; Sun, M.; Wang, Z. Molecular dynamics simulation on the effect of MgO/Al2O3 ratio on structure and properties of blast furnace slag under different basicity conditions. Metall. Mater. Trans. B 2019, 50, 367–375. [Google Scholar] [CrossRef]
- Kong, W.-G.; Liu, J.-H.; Yu, Y.-W.; Hou, X.-M.; He, Z.-J. Effect of w (MgO)/w (Al2O3) ratio and basicity on microstructure and metallurgical properties of blast furnace slag. J. Iron Steel Res. Int. 2021, 28, 1223–1232. [Google Scholar] [CrossRef]
- Fan, H.; Chen, D.; Liu, P.; Duan, H.; Huang, Y.; Long, M.; Liu, T. Structural and transport properties of FeO–TiO2 system through molecular dynamics simulations. J. Non Cryst. Solids 2018, 493, 57–64. [Google Scholar] [CrossRef]
- Siakati, C.; Macchieraldo, R.; Kirchner, B.; Tielens, F.; Peys, A.; Seveno, D.; Pontikes, Y. Unraveling the nano-structure of a glassy CaO-FeO-SiO2 slag by molecular dynamics simulations. J. Non Cryst. Solids 2020, 528, 119771. [Google Scholar] [CrossRef]
- Fan, H.; Wang, R.; Xu, Z.; Duan, H.; Chen, D. Structural and transport properties of FeO–TiO2–SiO2 systems: Insights from molecular dynamics simulations. J. Non Cryst. Solids 2021, 571, 121049. [Google Scholar] [CrossRef]
- Ma, S.; Li, K.; Zhang, J.; Jiang, C.; Sun, M.; Li, H.; Wang, Z.; Bi, Z. Structural Characteristics of CaO–SiO2–Al2O3–FeO Slag with Various FeO Contents Based on Molecular Dynamics Simulations. JOM 2021, 73, 1637–1645. [Google Scholar] [CrossRef]
- Ma, S.; Ren, S.; Li, K.; Zhang, J.; Jiang, C.; Bi, Z.; Sun, M. The Effects of FeO and Fe2O3 on the Structure and Properties of Aluminosilicate System: A Molecular Dynamics Study. JOM 2022, 74, 4162–4173. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Wan, X.; Zhang, T.-a.; Lin, S.; Wang, K. The Effect of FeO on Transport Properties of Dephosphorization Slag from Microstructure: A Molecular Dynamics Simulation Study. Trans. Indian. Inst. Met. 2023, 76, 3165–3173. [Google Scholar] [CrossRef]
- Li, K.; Khanna, R.; Bouhadja, M.; Zhang, J.; Liu, Z.; Su, B.; Yang, T.; Sahajwalla, V.; Singh, C.V.; Barati, M. A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K2O and Na2O. Chem. Eng. J. 2017, 313, 1184–1193. [Google Scholar] [CrossRef]
- Li, K.; Khanna, R.; Zhang, J.; Bouhadja, M.; Sun, M.; Barati, M.; Liu, Z.; Singh, C.V. Molecular dynamics investigation on coke ash behavior in the high-temperature zones of a blast furnace: Influence of alkalis. Energy Fuels 2017, 31, 13466–13474. [Google Scholar] [CrossRef]
- Goj, P.; Stoch, P. Molecular dynamics simulations of P2O5-Fe2O3-FeO-Na2O glasses. J. Non Cryst. Solids 2018, 500, 70–77. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Xiong, Z.; Chen, S.; Li, K.; Zhang, J.; Liang, W.; Sun, M.; Wang, Z.; Wang, L. Molecular dynamics investigations on the effect of Na2O on the structure and properties of blast furnace slag under different basicity conditions. J. Mol. Liq. 2020, 299, 112195. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Jiang, M. Effect of Na Ions on Melt Structure and Viscosity of CaO–SiO2–Na2O by Molecular Dynamics Simulations. ISIJ Int. 2021, 61, 1389–1395. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Bai, C.; Wen, L.; Lv, X. Effect of TiO2 content on the structure of CaO–SiO2–TiO2 system by molecular dynamics simulation. ISIJ Int. 2013, 53, 1131–1137. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Peng, H.; Wen, L.; Qiu, G.; Hu, M.; Bai, C. Structure analysis of CaO–SiO2–Al2O3–TiO2 slag by molecular dynamics simulation and FT-IR spectroscopy. ISIJ Int. 2014, 54, 734–742. [Google Scholar] [CrossRef]
- Yao, T.-H.; He, S.-P.; Wu, T.; Wang, Q. Molecular dynamics simulations of microstructural properties of CaO–SiO2–TiO2 fluorine-free slag systems. Ironmak. Steelmak. 2017, 44, 551–558. [Google Scholar] [CrossRef]
- Fan, H.; Zhu, Y.; Xu, Z.; Wang, R. Structure of the TiO2−MgO–Al2O3 system: Insights from molecular dynamics simulations. J. Non Cryst. Solids 2022, 584, 121482. [Google Scholar] [CrossRef]
- Kim, Y.; Nam, C.; Kim, S.; Jeon, H. Rheological properties and structure of molten FeO-TiO2-B2O3 ilmenite smelting slag. J. Non Cryst. Solids 2021, 552, 120308. [Google Scholar] [CrossRef]
- Ma, S.; Li, K.; Zhang, J.; Jiang, C.; Bi, Z.; Sun, M.; Wang, Z. Effect of MnO content on slag structure and properties under different basicity conditions: A molecular dynamics study. J. Mol. Liq. 2021, 336, 116304. [Google Scholar] [CrossRef]
- Fan, G.; Diao, J.; Jiang, L.; Zhang, Z.; Xie, B. Molecular dynamics analysis of the microstructure of the CaO–P2O5–SiO2 slag system with varying P2O5/SiO2 ratios. Mater. Trans. 2015, 56, 655–660. [Google Scholar] [CrossRef]
- Saiko, I.; Saetova, N.; Raskovalov, A.; Il’ina, E.; Molchanova, N.; Kadyrova, N. Hopping conductivity in V2O5–P2O5 glasses: Experiment and non-constant force field molecular dynamics. Solid. State Ion. 2020, 345, 115180. [Google Scholar] [CrossRef]
- Nguyen, M.A.; Nguyen, V.H. Structural Properties of Liquid CaO–SiO2–P2O5 System. VNU J. Sci. Math. Phys. 2023, 39. [Google Scholar] [CrossRef]
- Du, Y.; Yuan, Y.; Li, L.; Long, M.; Duan, H.; Chen, D. Insights into structure and properties of P2O5-based binary systems through molecular dynamics simulations. J. Mol. Liq. 2021, 339, 116818. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, J.; Cao, X.; Zhang, C.; Xu, G.; Qiao, X.; Liu, Y.; Peng, S.; Han, G. A modified random network model for P2O5–Na2O–Al2O3–SiO2 glass studied by molecular dynamics simulations. RSC Adv. 2021, 11, 7025–7036. [Google Scholar] [CrossRef]
- Sun, H.; Yang, J.; Zhang, R.; Xu, L. Insight into the structure and transport properties of CaO-SiO2-P2O5 system during the phosphorus enrichment process: A molecular dynamics simulation. J. Non Cryst. Solids 2024, 627, 122818. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, B.; Zhou, W.; Diao, J.; Li, H.-Y. Structural characterization of FeO–SiO2–V2O3 slags using molecular dynamics simulations and FT-IR spectroscopy. ISIJ Int. 2016, 56, 828–834. [Google Scholar] [CrossRef]
- Saetova, N.; Raskovalov, A.; Antonov, B.; Denisova, T.; Zhuravlev, N. Structural features of Li2O–V2O5–B2O3 glasses: Experiment and molecular dynamics simulation. J. Non Cryst. Solids 2020, 545, 120253. [Google Scholar] [CrossRef]
- Feng, X.; Yao, W.; Li, J. Effect of B2O3 on the structure of CaO–Al2O3–B2O3 ternary melts: A molecular dynamics simulation. J. Non Cryst. Solids 2021, 574, 121141. [Google Scholar] [CrossRef]
- Bi, Z.; Li, K.; Jiang, C.; Zhang, J.; Ma, S.; Sun, M.; Wang, Z.; Li, H. Effects of B2O3 on the structure and properties of blast furnace slag by molecular dynamics simulation. J. Non Cryst. Solids 2021, 551, 120412. [Google Scholar] [CrossRef]
- Fan, H.; Wang, R.; Xu, Z.; Duan, H.; Chen, D. The effect of B2O3 on the structure and properties of titanium slag melt by molecular dynamics simulations. J. Mater. Res. Technol. 2021, 15, 1046–1058. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Jiang, M. Effect of B2O3 on the Melt Structure and Viscosity of CaO–SiO2 System. Steel Res. Int. 2022, 93, 2100520. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, Y.; Zu, Q.; Huang, S.; Zhang, L.; Deng, L.; Zeng, H. Molecular dynamics simulations study on structure and properties of CaO–MgO–B2O3–Al2O3–SiO2 glasses with different B2O3/MgO. J. Non Cryst. Solids 2023, 616, 122458. [Google Scholar] [CrossRef]
- Asada, T.; Yamada, Y.; Ito, K. The estimation of structural properties for molten CaO–CaF2–SiO2 system by molecular dynamics simulations. ISIJ Int. 2008, 48, 120–122. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Jiang, M. Effect of Fluorine on Melt Structure for CaO–SiO2–CaF2 and CaO–Al2O3–CaF2 by Molecular Dynamics Simulations. ISIJ Int. 2020, 60, 2176–2182. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, C.; Jiang, M.; Sun, J.; Zheng, X. The Relationship Between Composition and Structure: The Influence of Different Methods of Adding CaF2 on the Melt Structure of CaO–SiO2 Slags by Molecular Dynamics Simulations. J. Sustain. Metall. 2022, 8, 1269–1275. [Google Scholar] [CrossRef]
- Jia, B.; Li, M.; Yan, X.; Wang, Q.; He, S. Structure investigation of CaO–SiO2–Al2O3–Li2O by molecular dynamics simulation and Raman spectroscopy. J. Non Cryst. Solids 2019, 526, 119695. [Google Scholar] [CrossRef]
- Jiao, S.; Guo, P.; Chen, F.; Min, Y.; Liu, C. Molecular Dynamics Analysis of the Structural Behavior of Aluminum Ion in the Slag of CaO–SiO2–Al2O3–Li2O System. Steel Res. Int. 2024, 95, 2300310. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Zhong, M.; Li, Z.; Wang, C. Elucidating the effect of Al2O3/SiO2 mass ratio upon SiO2-MnO-CaF2-Al2O3-based welding fluxes: Structural analysis and thermodynamic evaluation. J. Non Cryst. Solids 2023, 601, 122071. [Google Scholar] [CrossRef]
- Zheng, K.; Zhang, Z.; Yang, F.; Sridhar, S. Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying Al2O3/SiO2 ratios. ISIJ Int. 2012, 52, 342–349. [Google Scholar] [CrossRef]
- Xu, B.; Cao, Y.; Wang, Z.; Du, P.; Long, Y. Molecular Dynamics Study on the Effect of SiO2/Al2O3 Mass Ratio on the Structural Properties and Viscosity of Molten Fused Red Mud. Minerals 2022, 12, 925. [Google Scholar] [CrossRef]
- Marx, D.; Hutter, J. Ab initio molecular dynamics: Theory and implementation. Mod. Methods Algorithms Quantum Chem. 2000, 1, 141. [Google Scholar]
- Iftimie, R.; Minary, P.; Tuckerman, M.E. Ab initio molecular dynamics: Concepts, recent developments, and future trends. Proc. Natl. Acad. Sci. USA 2005, 102, 6654–6659. [Google Scholar] [CrossRef]
- Scherer, C.; Schmid, F.; Letz, M.; Horbach, J. Structure and dynamics of B2O3 melts and glasses: From ab initio to classical molecular dynamics simulations. Comput. Mater. Sci. 2019, 159, 73–85. [Google Scholar] [CrossRef]
- Sajid, M.; Bai, C.; Yu, W.; You, Z.; Tan, M.; Aamir, M. First principle study of electronic structural and physical properties of CaOSiO2Al2O3 ternary slag system by using Ab Initio molecular and lattice dynamics. J. Non Cryst. Solids 2020, 550, 120384. [Google Scholar] [CrossRef]
- He, X.; Ma, S.; Wang, L.; Dong, H.; Chou, K. An Ab Initio Molecular Dynamics Simulation of Liquid FeO–SiO2 Silicate System with Sulfur Dissolving. Metall. Mater. Trans. B 2021, 52, 3346–3353. [Google Scholar] [CrossRef]
- Qian, Y.; Song, B.; Jin, J.; Prayogo, G.I.; Utimula, K.; Nakano, K.; Maezono, R.; Hongo, K.; Zhao, G. Ab initio molecular dynamics simulation of structural and elastic properties of SiO2–P2O5–Al2O3–Na2O glass. J. Am. Ceram. Soc. 2022, 105, 6604–6615. [Google Scholar] [CrossRef]
- He, X.; Ma, S.; Wang, L.; Dong, H.; Chou, K. Comparison of desulfurization mechanism in liquid CaO–SiO2 and MnO–SiO2: An ab initio molecular dynamics simulation. J. Alloys Compd. 2022, 896, 163008. [Google Scholar] [CrossRef]
- Zhang, C.; Kong, Y.-Q.; Wu, T.; Lei, J.; Wang, H.-C. First-principles study on microstructure of CaO–Al2O3–B2O3 slag. J. Mol. Liq. 2022, 368, 120738. [Google Scholar] [CrossRef]
- Sarnthein, J.; Pasquarello, A.; Car, R. Structural and electronic properties of liquid and amorphous si o 2: An ab initio molecular dynamics study. Phys. Rev. Lett. 1995, 74, 4682. [Google Scholar] [CrossRef]
- Jiang, C.; Li, K.; Barati, M.; Guo, P.; Danaei, A.; Liang, W.; Zhang, J. The interaction mechanism between molten SiO2–Al2O3–CaO slag and graphite with different crystal orientations: Experiment and Ab initio molecular dynamics simulation. Ceram. Int. 2023, 49, 8295–8301. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Gasteiger, J.; Zupan, J. Neural networks in chemistry. Angew. Chem. Int. Ed. Engl. 1993, 32, 503–527. [Google Scholar] [CrossRef]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.; Bridgland, A. Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef]
- Dral, P.O. Quantum chemistry in the age of machine learning. J. Phys. Chem. Lett. 2020, 11, 2336–2347. [Google Scholar] [CrossRef]
- Zhang, L.; Han, J.; Wang, H.; Car, R.; Weinan, E. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 2018, 120, 143001. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tan, M.; Li, T.; Li, J.; Shang, B. Study on the structural properties of refining slags by molecular dynamics with deep learning potential. J. Mol. Liq. 2022, 353, 118787. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, S.; Guo, Y.F.; Chen, F.; Zheng, F.Q. Effects of Basicity and MgO in Slag on the Behaviors of Smelting Vanadium Titanomagnetite in the Direct Reduction-Electric Furnace Process. Metals 2016, 6, 107. [Google Scholar] [CrossRef]
- Wei Zhang, K.Z. jiating Rao, Weiguo Fu and Mansheng Chu, Discussion on standardization of Melt-property Temperature of slag. J. IRon Steel Res. 2011, 23, 16–19. [Google Scholar]
- Liang, H.; Chu, M.; Feng, C.; Tang, J.; Liu, Z.; Wang, W. Optimisation study and affecting mechanism of CaO/SiO2 and MgO on viscous behaviours of titanium-bearing blast furnace slag. Ironmak. Steelmak. 2018, 47, 106–117. [Google Scholar] [CrossRef]
- Gao, Y.; Bian, L.; Liang, Z. Influence of B2O3 and TiO2 on viscosity of titanium-bearing blast furnace slag. Steel Res. Int. 2015, 86, 386–390. [Google Scholar] [CrossRef]
- Gao, Y.-M.; Wang, S.-B.; Hong, C.; Ma, X.-J.; Yang, F. Effects of basicity and MgO content on the viscosity of the SiO2–CaO–MgO–9 wt% Al2O3 slag system. Int. J. Miner. Metall. Mater. 2014, 21, 353–362. [Google Scholar] [CrossRef]
- Kim, H.; Kim, W.H.; Sohn, I.; Min, D.J. The effect of MgO on the viscosity of the CaO–SiO2–20 wt% Al2O3–MgO slag system. Steel Res. Int. 2010, 81, 261–264. [Google Scholar] [CrossRef]
- Jiao, K.X.; Zhang, J.L.; Wang, Z.Y.; Chen, C.L.; Liu, Y.X. Effect of TiO2 and FeO on the viscosity and structure of blast furnace primary slags. Steel Res. Int. 2017, 88, 1600296. [Google Scholar] [CrossRef]
- Xu, R.Z.; Zhang, J.L.; Han, W.X.; Chang, Z.Y.; Jiao, K.X. Effect of BaO and Na2O on the viscosity and structure of blast furnace slag. Ironmak. Steelmak. 2018, 47, 168–172. [Google Scholar] [CrossRef]
- Ye, G.; Yang, J.; Zhang, R.; Yang, W.; Sun, H. Behavior of phosphorus enrichment in dephosphorization slag at low temperature and low basicity. Int. J. Miner. Metall. Mater. 2021, 28, 66–75. [Google Scholar] [CrossRef]
- Schwitalla, D.H.; Guhl, S.; Körner, J.; Laabs, M.; Bai, J.; Meyer, B. Meta-study on the effect of P2O5 on single phase slag viscosity and the effect of P2O5 induced liquid phase immiscibility on dispersion viscosity. Fuel 2021, 305, 121501. [Google Scholar] [CrossRef]
- Xia, Y.; Li, J.; Fan, D.; Hou, G. Effects of interfacial oxygen potential and slag phase changing during slag formation process on dephosphorization behavior. ISIJ Int. 2019, 59, 1519–1526. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, K.; Liao, J.; Wang, X.; Zhang, Z. Effect of P2O5 addition on the viscosity and structure of titanium bearing blast furnace slags. ISIJ Int. 2014, 54, 1491–1497. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Ran, M.; Jiang, Z.; Zheng, L.; Feng, H.; Yu, J.; Dai, Y. Effect of Al2O3 on Viscosity and Refining Ability of High Basicity Slag for Heat-resistant Austenitic Stainless Steel. ISIJ Int. 2022, 62, 2207–2216. [Google Scholar] [CrossRef]
- Xu, R.Z.; Zhang, J.L.; Wang, Z.Y.; Jiao, K.X. Influence of Cr2O3 and B2O3 on viscosity and structure of high alumina slag. Steel Res. Int. 2017, 88, 1600241. [Google Scholar] [CrossRef]
- Cherry, J.; Davies, H.; Mehmood, S.; Lavery, N.; Brown, S.; Sienz, J. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Technol. 2015, 76, 869–879. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, X.; Yan, Z.; Qin, Y.; Bai, C. Desulphurisation ability of blast furnace slag containing high Al2O3 and 5 mass% TiO2 at 1773 K. Ironmak. Steelmak. 2016, 43, 378–384. [Google Scholar] [CrossRef]
- Shen, F.; Jiang, X.; Wu, G.; Wei, G.; Li, X.; Shen, Y. Proper MgO addition in blast furnace operation. ISIJ Int. 2006, 46, 65–69. [Google Scholar] [CrossRef]
- Liu, W.; Zuo, H. Effect of MnO and substituting CaO with BaO on the desulfurization ability of blast furnace slag. Metall. Mater. Trans. B 2021, 52, 2275–2282. [Google Scholar] [CrossRef]
- Ju, J.; Liu, W.; Xing, X.; Wang, J.; An, J. Sulphide capacity of CaO–SiO2–8% MgO–Al2O3–BaO slags ranging from 0% to 5% in BaO. Metall. Res. Technol. 2019, 116, 106. [Google Scholar] [CrossRef]
- Park, J.H.; Park, G.-H. Sulfide capacity of CaO–SiO2–MnO–Al2O3–MgO Slags at 1873 K. ISIJ Int. 2012, 52, 764–769. [Google Scholar] [CrossRef]
- Talapaneni, T.; Yedla, N.; Sarkar, S. Study on desulfurization capacity of high alumina blast furnace slag at 1773 K using slag-metal equilibrium technique. Metall. Res. Technol. 2018, 115, 502. [Google Scholar] [CrossRef]
- Liu, W.; Xing, X.; Zuo, H. Effect of TiO2 on viscosity and sulfide capacity of blast furnace slag containing barium. ISIJ Int. 2020, 60, 1886–1891. [Google Scholar] [CrossRef]
- Xu, C.-y.; Wang, C.; Xu, R.-Z.; Zhang, J.-l.; Jiao, K.-X. Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags. Int. J. Miner. Metall. Mater. 2021, 28, 797–803. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Zhu, X.; Zhao, Y. Research on Activities of CaO–SiO2–B2O3(Al2O3, Fe2O3) Slag System. Appl. Mech. Mater. 2012, 217–219, 492–495. [Google Scholar]
- Lai, F.; Yao, W.; Li, J. Effect of B2O3 on structure of CaO–Al2O3–SiO2–TiO2–B2O3 glassy systems. ISIJ Int. 2020, 60, 1596–1601. [Google Scholar] [CrossRef]
Variable | System | Potential | Temperature | Reference |
---|---|---|---|---|
SiO2 | SiO2 | BMH and MORSE | 1700–1800 K | [28] |
SiO2 | Tersoff | 300 K and 5000 K | [29] | |
SiO2-CaO-Al2O3 | BMH | 2223 K | [30] | |
Al2O3 | SiO2-CaO-Al2O3-MgO | BMH | 1873 K | [31] |
Na2O-Al2O3, K2O-Al2O3, MgO-Al2O3, and CaO-Al2O3, | BMH | 2473 K | [32] | |
SiO2-CaO-Al2O3-MgO-TiO2 | BMH | 1773 K | [33] | |
Na2O-Al2O3-SiO2 | BMH | 4000 K, 3000 K, 2500 K, 2000 K, 1500 K, 1000 K, 750 K, 700 K, 650 K, 600 K, 550 K, 500 K, 30 K | [34] | |
SiO2-CaO-Al2O3 | BMH | 1773 K | [35] | |
SiO2-CaO-Al2O3-MgO-FeO | BMH | 1873 K | [36] | |
SiO2-CaO-Al2O3 | BMH | 1873 K | [11] | |
SiO2-CaO-Al2O3-B2O3 | BMH | 1773 K | [37] | |
CaO-Al2O3-TiO2 | BMH | 1873 K | [38] | |
SiO2-CaO-Al2O3-MgO | COMPASS | 1773 K | [39] | |
CaO | SiO2-CaO-Al2O3 | BMH | 1773 K | [40] |
SiO2-CaO-Al2O3-MgO | BMH | 1773 K | [41] | |
SiO2-CaO-Al2O3-MgO | BMH | 1800 K | [42] | |
TiO2-SiO2-MgO-CaO | BMH | 1973 K | [43] | |
SiO2-CaO-Al2O3-Na2O | BMH | 1873 K | [44] | |
SiO2-CaO-Al2O3 | BMH | 1773 K | [45] | |
SiO2-CaO-FeO | BMH | 1873 K | [46] | |
Basicity | SiO2-CaO-Al2O3-FeO | BMH and LJ | 1873 K | [1] |
SiO2-CaO-FeO-P2O5 | BMH | 1673 K | [47] | |
SiO2-CaO-Al2O3-MgO | BMH | 1873 K | [48] | |
SiO2-CaO-Al2O3-MgO-TiO2 | BMH | 1773 K | [33] | |
SiO2-CaO-B2O3 | BMH | 1873 K | [49] | |
MgO | SiO2-CaO-Al2O3-MgO-TiO2 | BMH | 1773 K | [33] |
SiO2-MgO-Al2O3 | BMH | 1773 K | [40] | |
SiO2-CaO-Al2O3-MgO | BMH | 1773 K | [41] | |
TiO2-SiO2-MgO-CaO | BMH | 1973 K | [43] | |
SiO2-MnO-MgO-B2O3 | BMH and LJ | 1873 K | [50] | |
MgO/Al2O3 | CaO-MgO-Al2O3-SiO2 | BMH | 1773 K | [51] |
CaO-MgO-Al2O3-SiO2 | BMH | 1773 K | [52] | |
CaO-MgO-Al2O3-SiO2 | COMPASS | 1773 K | [53] | |
FeO | FeO-TiO2 | BMH and LJ | 1973 K | [54] |
SiO2-CaO-FeO | BMH | 300 K | [55] | |
FeO-TiO2-SiO2 | BMH and LJ | 1973 K | [56] | |
CaO-SiO2-Al2O3-FeO | BMH | 1773 K | [57] | |
SiO2-CaO-Al2O3 | BMH | 1773 K | [45] | |
CaO-SiO2-Al2O3-FeO | BMH | 1873 K | [58] | |
CaO-SiO2-FeO-P2O5 | BMH | 1673 K | [59] | |
Na2O or K2O | CaO-Al2O3-SiO2-Na2O(K2O) | BMH and MORSE | 2273 K | [60] |
CaO-Al2O3-SiO2-Na2O-K2O | BMH and MORSE | 2273 K | [61] | |
P2O5-Fe2O3-FeO-Na2O | BMH | 300 K | [62] | |
SiO2-CaO-Al2O3-MgO-Na2O | BMH and MORSE | 1773 K | [63] | |
CaO-SiO2-Na2O | BMH | 1773 K | [64] | |
SiO2-Al2O3-CaO-Na2O | BMH | 1873 K | [44] | |
TiO2 | CaO-SiO2-TiO2 | BMH | 1723 K | [65] |
CaO-SiO2-Al2O3TiO2 | BMH | 1773 K | [66] | |
CaO-SiO2-TiO2 | BMH | 1873 K | [67] | |
FeO-TiO2-SiO2 | BMH and LJ | 1973 K | [57] | |
CaO-SiO2-TiO2 | BMH | 1873 K | [38] | |
TiO2− MgO-Al2O3 | BMH | 1973 K | [68] | |
FeO-TiO2-B2O3 | BMH | 1823 K | [69] | |
MnO | CaO-SiO2-Al2O3-MnO | BMH and LJ | 1773 K | [70] |
SiO2-MnO-MgO-B2O3 | BMH and LJ | 1873 K | [51] | |
P2O5 | CaO-P2O5-SiO2 | BMH | 1673 K | [71] |
V2O5-P2O5 | BMH | 298 K | [72] | |
CaO-SiO2-P2O5 | BMH | 3000 K | [73] | |
P2O5-based binary system | BMH | 1873 K | [74] | |
SiO2-Al2O3-Na2O-P2O5 | Modified Teter | 300 K | [75] | |
CaO-SiO2-P2O5 | BMH | 1673 K | [76] | |
V2O5 | FeO-SiO2-V2O3 | BMH | 1823 K | [77] |
B2O3 | Li2O-V2O5-B2O3 | BMH and MORSE | 298 K | [78] |
CaO-Al2O3-B2O3 | BMH | 1973 K | [79] | |
SiO2-CaO-B2O3 | BMH | 1773 K | [35] | |
SiO2-CaO-Al2O3-B2O3 | BMH | 1773 K | [80] | |
SiO2-CaO-Al2O3-B2O3 | BMH | 1773 K | [37] | |
B2O3-TiO2-CaO-MgO-SiO2 | BMH | 1973 K | [81] | |
SiO2-CaO-B2O3 | BMH | 2573 K | [82] | |
CaO-MgO-B2O3-Al2O3-SiO2 | BMH and short order correction | 300 K | [83] | |
CaF | CaO-CaF2-SiO2 | BMH | 1773 K | [84] |
CaO-SiO2(Al2O3)-CaF2 | BMH | 1873 K | [85] | |
CaO-CaF2-SiO2 | BMH | 1823 K | [86] | |
Li2O | CaO-SiO2-Al2O3-Li2O | BMH | 1673 K | [87] |
CaO-SiO2-Al2O3-Li2O | BMH | 1673 K | [88] | |
SiO2/Al2O3 ratio | SiO2-MnO-CaF2-Al2O3 | BMH | 1823 K | [89] |
CaO-SiO2-Al2O3 | BMH | 2000 K | [90] | |
CaO-SiO2-Al2O3-MgO-FeO-TiO2-Na2O | BMH | 1800 K | [91] |
System | Exchange–Correlation Functionals and Pseudopotential | Temperature | Reference |
---|---|---|---|
B2O3 | GGA-PBE, PAW Method | 800 K, 2300 K, 3600 K | [94] |
CaO-SiO2-Al2O3 | GGA-PW91, PAW Method | 1773 K | [95] |
FeO-SiO2-S | GGA-PBE, PAW Method | 2000 K | [96] |
SiO2-P2O5-Al2O3-Na2O | GGA-PBE, PAW Method | 300 K, 1000 K, 1500, 2000 K | [97] |
CaO(MnO)-SiO2 | GGA-PBE, PAW Method | 2000 K | [98] |
CaO-Al2O3-B2O3 | GGA-PBE, GHT-DZVP | 1873 K | [99] |
Liquid and Amorphous SiO2 | LDA, ultrasoft PP | 300K, 3000 K | [100] |
SiO2-Al2O3-CaO | GGA-PBE, PAW Method | 2000 K | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Li, K.; Bi, Z.; Ma, S.; Zhang, J.; Liu, B.; Li, J. Developments in Atomistic and Nano Structure Evolution Mechanisms of Molten Slag Using Atomistic Simulation Methods. Nanomaterials 2024, 14, 464. https://doi.org/10.3390/nano14050464
Jiang C, Li K, Bi Z, Ma S, Zhang J, Liu B, Li J. Developments in Atomistic and Nano Structure Evolution Mechanisms of Molten Slag Using Atomistic Simulation Methods. Nanomaterials. 2024; 14(5):464. https://doi.org/10.3390/nano14050464
Chicago/Turabian StyleJiang, Chunhe, Kejiang Li, Zhisheng Bi, Shufang Ma, Jianliang Zhang, Bo Liu, and Jiaqi Li. 2024. "Developments in Atomistic and Nano Structure Evolution Mechanisms of Molten Slag Using Atomistic Simulation Methods" Nanomaterials 14, no. 5: 464. https://doi.org/10.3390/nano14050464
APA StyleJiang, C., Li, K., Bi, Z., Ma, S., Zhang, J., Liu, B., & Li, J. (2024). Developments in Atomistic and Nano Structure Evolution Mechanisms of Molten Slag Using Atomistic Simulation Methods. Nanomaterials, 14(5), 464. https://doi.org/10.3390/nano14050464