Dependence of Positive Bias Stress Instability on Threshold Voltage and Its Origin in Solution-Processed Aluminum-Doped Indium Oxide Thin-Film Transistors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Oxide Precursor Solutions
2.2. Fabrication of Devices
2.3. Analysis of Thin Films and Devices
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef]
- Ma, L.-Y.; Soin, N.; Aidit, S.N.; Rezali, F.A.M.; Hatta, S.F.W.M. Recent advances in flexible solution-processed thin-film transistors for wearable electronics. Mater. Sci. Semicond. 2023, 165, 107658. [Google Scholar] [CrossRef]
- Xu, W.; Li, H.; Xu, J.-B.; Wang, L. Recent advances of solution-processed metal oxide thin-film transistors. ACS. Appl. Mater. Interfaces 2018, 10, 25878–25901. [Google Scholar] [CrossRef]
- Sheng, J.; Jeong, H.-J.; Han, K.-L.; Hong, T.; Park, J.-S. Review of recent advances in flexible oxide semiconductor thin-film transistors. J. Inf. Disp. 2017, 18, 159–172. [Google Scholar] [CrossRef]
- Thomas, S.R.; Pattansattayavong, P.; Anthopoulos, T.D. Solution-processable metal oxide semiconductors for thin-film transistor applications. Chem. Soc. Rev. 2013, 42, 6910–6923. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Zhu, J.; Wang, J.; Zhao, C.; Zhu, T.; Ren, Q.; Liu, Q.; Qiu, R.; Zhang, M.; et al. Ultra-flexible monolithic 3d complementary metal-oxide-semiconductor electronics. Adv. Funct. Mater. 2023, 33, 3397–3398. [Google Scholar] [CrossRef]
- Wang, M.; Liang, L.; Luo, H.; Zhang, S.; Zhang, H.; Javaid, K.; Cao, H. Threshold voltage tuning in a-IGZO tfts with ultrathin SnOx capping layer and application to depletion-load inverter. IEEE Electron Device Lett. 2016, 37, 422–425. [Google Scholar] [CrossRef]
- Oh, J.; Jung, K.-M.; Jung, E.K.; Lee, J.; Lee, S.-Y.; Park, K. Novel Driving Methods of Gate Driver for Enhancement- and Depletion-Mode Oxide TFTs. IEEE J. Electron Devices Soc. 2020, 8, 67–73. [Google Scholar] [CrossRef]
- Yi, S.; Huo, X.; Liao, C.; Wang, Y.; Wu, J.; Jiao, H.; Zhang, M.; Zhang, S. An a-IGZO TFT pixel circuit for amoled display systems with compensation for mobility and threshold voltage variations. In Proceedings of the 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC), Shenzhen, China, 6–8 June 2018; pp. 1–2. [Google Scholar]
- Bagheri, M.; Cheng, X.; Zhang, J.; Lee, S.; Ashtiani, S.; Nathan, A. Threshold voltage compensation error in voltage programmed amoled displays. J. Disp. Technol. 2016, 12, 658–664. [Google Scholar] [CrossRef]
- Kim, J.-H.; Oh, J.; Park, K.; Kim, Y.-S. IGZO TFT gate driver circuit with large threshold voltage margin. Displays 2018, 53, 1–7. [Google Scholar] [CrossRef]
- Choi, S.; Park, J.; Hwang, S.-H.; Kim, C.; Kim, Y.-S.; Oh, S.; Baeck, J.H.; Bae, J.U.; Noh, J.; Lee, S.-W.; et al. Excessive oxygen peroxide model-based analysis of positive-bias-stress and negative-bias-illumination-stress instabilities in self-aligned top-gate coplanar In–Ga–Zn–O thin-film transistors. Adv. Mater. 2022, 8, 2101062. [Google Scholar] [CrossRef]
- Yu, E.S.; Kim, S.G.; Moon, S.J.; Bae, B.S. Improving the electrical stability of a-IGZO TFT through gate surround structures. Electron. Lett. 2023, 59, e12977. [Google Scholar] [CrossRef]
- Park, J.S.; Maeng, W.-J.; Kim, H.-S.; Park, J.-S. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 2012, 520, 1679–1693. [Google Scholar] [CrossRef]
- Kim, W.-S.; Lee, Y.-H.; Cho, Y.-J.; Kim, D.-K.; Park, K.T.; Kim, O. Effect of wavelength and intensity of light on a-InGaZnO tfts under negative bias illumination stress. ECS J. Solid State Sci. Technol. 2016, 6, Q6–Q9. [Google Scholar] [CrossRef]
- Li, Y.; Pei, Y.L.; Hu, R.Q.; Chen, Z.M.; Zhao, Y.; Shen, Z.; Fan, B.F.; Liang, J.; Wang, G. Effect of channel thickness on electrical performance of amorphous IGZO thin-film transistor with atomic layer deposited alumina oxide dielectric. Curr. Appl. Phys. 2014, 14, 941–945. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, C. Enhancement of electrical stability of metal oxide thin-film transistors against various stresses. J. Mater. Chem. 2023, 11, 7121–7143. [Google Scholar] [CrossRef]
- Jeong, J.K. Photo-bias instability of metal oxide thin film transistors for advanced active matrix displays. J. Mater. Res. 2013, 28, 2071–2084. [Google Scholar] [CrossRef]
- Kim, B.S.; Jeong, Y.T.; Lee, D.; Choi, T.Y.; Jung, S.-H.; Choi, J.W.; Yang, C.; Jo, K.; Lee, B.-J.; Park, E.; et al. Solution-processed zinc-indium-tin oxide thin-film transistors for flat-panel displays. Appl. Phys. Lett. 2013, 103, 072110. [Google Scholar] [CrossRef]
- Mo, Y.G.; Kim, M.; Kang, C.K.; Jeong, J.H.; Park, Y.S.; Choi, C.G.; Kim, H.D.; Kim, S.S. Amorphous-oxide tft backplane for large-sized AMOLED TVs. J. Soc. Inf. Disp. 2011, 19, 16–20. [Google Scholar] [CrossRef]
- Chen, R.; Lan, L. Solution-processed metal-oxide thin-film transistors: A review of recent developments. Nanotechnology 2019, 30, 312001. [Google Scholar] [CrossRef] [PubMed]
- Acharya, V.; Agarwal, K.; Mondal, S. Electronic materials for solution-processed tfts. Mater. Res. Express 2023, 10, 082002. [Google Scholar] [CrossRef]
- Jo, J.-W.; Kang, S.-H.; Heo, J.S.; Kim, Y.-H.; Park, S.K. Flexible metal oxide semiconductor devices made by solution methods. Chem. Eur. J. 2020, 26, 9126–9156. [Google Scholar] [CrossRef]
- Kim, D.J.; Kim, D.L.; Rim, Y.S.; Kim, C.H.; Jeong, W.H.; Lim, H.S.; Kim, H.J. Improved electrical performance of an oxide thin-film transistor having multistacked active layers using a solution process. ACS Appl. Mater. Interfaces 2012, 4, 4001–4005. [Google Scholar] [CrossRef]
- Hwang, Y.-J.; Kim, D.-K.; Jeon, S.-H.; Wang, Z.; Park, J.; Lee, S.-H.; Jang, J.; Kang, I.M.; Bae, J.-H. Importance of structural relaxation on the electrical characteristics and bias stability of solution-processed ZnSno thin-film transistors. Nanomaterials 2022, 12, 3097. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Heo, J.-S.; Kim, T.-H.; Park, S.; Yoon, M.-H.; Kim, J.; Oh, M.S.; Yi, G.-R.; Noh, Y.-Y.; Park, S.K. Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature 2012, 489, 128–132. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Z.; Xu, G.; Cai, L.; Han, T.-H.; Zhang, A.; Wu, Q.; Wang, R.; Huang, T.; Cheng, P.; et al. High-performance indium-gallium-zinc oxide thin film transistor via interface engineering. Adv. Funct. Mater. 2020, 30, 2003285. [Google Scholar] [CrossRef]
- Kim, D.-K.; Seo, K.-H.; Kwon, D.-H.; Jeon, S.-H.; Hwang, Y.-J.; Wang, Z.; Park, J.; Lee, S.-H.; Jang, J.; Kang, I.M.; et al. Viable strategy to minimize trap states of patterned oxide thin films for both exceptional electrical performance and uniformity in sol–gel processed transistors. Chem. Eng. J. 2022, 441, 135833. [Google Scholar] [CrossRef]
- Tsay, C.-Y.; Yan, T.-Y. Solution processed amorphous InGaZnO semiconductor thin films and transistors. J. Phys. Chem. Solids. 2014, 75, 142–147. [Google Scholar] [CrossRef]
- Rim, Y.S.; Jeong, W.H.; Kim, D.L.; Lim, H.S.; Kim, K.M.; Kim, H.J. Simultaneous modification of pyrolysis and densification for low-temperature solution-processed flexible oxide thin-film transistors. J. Mater. Chem. 2012, 22, 12491–12497. [Google Scholar] [CrossRef]
- Oh, C.; Jung, H.; Park, S.H.; Kim, B.S. Enhanced electrical properties of In-Ga-Sn-O thin films at low-temperature annealing. Ceram. Int. 2022, 48, 9817–9823. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Parthiban, S.; Kwon, J.Y. Role of dopants as a carrier suppressor and strong oxygen binder in amorphous indium-oxide-based field effect transistor. J. Mater. Res. 2014, 29, 1585–1596. [Google Scholar] [CrossRef]
- Park, S.; Kim, K.-H.; Jo, J.-W.; Sung, S.; Kim, K.-T.; Lee, W.-J.; Kim, J.; Kim, H.J.; Yi, G.-R.; Kim, Y.-H.; et al. In-depth studies on rapid photochemical activation of various sol–gel metal oxide films for flexible transparent electronics. Adv. Funct. Mater. 2015, 25, 2807–2815. [Google Scholar] [CrossRef]
- Isik, M.; Gasanly, N. Composition-tuned band gap energy and refractive index in GaSxSe1−x layered mixed crystals. Mater. Chem. Phys. 2017, 190, 74–78. [Google Scholar] [CrossRef]
- Tak, Y.J.; Ahn, B.D.; Park, S.P.; Kim, S.J.; Song, A.R.; Chung, K.-B.; Kim, H.J. Activation of sputter-processed indium–gallium–zinc oxide films by simultaneous ultraviolet and thermal treatments. Sci. Rep. 2016, 6, 21869. [Google Scholar] [CrossRef]
- Kwon, S.; Hong, J.; Jun, B.-H.; Chung, K.-B. Improvement of electrical performance by neutron irradiation treatment on IGZO thin film transistors. Coatings 2020, 10, 147. [Google Scholar] [CrossRef]
- Lee, S.; Ghaffarzadeh, K.; Nathan, A.; Robertson, J.; Jeon, S.; Kim, C.; Song, I.-H.; Chung, U.-I. Oxi Trap-limited and percolation conduction mechanisms in amorphous oxide semiconductor thin film transistors. Appl. Phys. Lett. 2011, 98, 203508. [Google Scholar] [CrossRef]
- Lee, S.; Nathan, A. Localized tail state distribution in amorphous oxide transistors deduced from low temperature measurements. Appl. Phys. Lett. 2012, 101, 113502. [Google Scholar] [CrossRef]
- Faber, H.; Das, S.; Lin, Y.-H.; Pliatsikas, N.; Zhao, K.; Kehagias, T.; Dimitrakopulos, G.; Amassian, A.; Patsalas, P.A.; Anthopoulos, T.D. Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution. Sci. Adv. 2017, 3, e1602640. [Google Scholar] [CrossRef]
- Lee, S.; Jeon, S.; Nathan, A. Modeling Sub-Threshold Current–Voltage Characteristics in Thin Film Transistors. J. Disp. Technol. 2013, 9, 883–889. [Google Scholar]
- Kim, D.-H.; Jeong, H.-S.; Lee, D.-H.; Bae, K.-H.; Lee, S.; Kim, M.-H. Quantitative analysis of positive-bias-stress-induced electron trapping in the gate insulator in the self-aligned top gate coplanar indium–gallium–zinc oxide thin-film transistors. Coatings 2021, 24, 1192. [Google Scholar] [CrossRef]
- Kim, D.H.; Choi, S.; Jang, J.; Kang, H.; Kim, D.M.; Choi, S.-J.; Kim, Y.-S.; Oh, S.; Baeck, J.H.; Bae, J.U.; et al. Experimental decomposition of the positive bias temperature stress-induced instability in self-aligned coplanar InGaZnO thin-film transistors and its modeling based on the multiple stretched-exponential functions. J. Soc. Inf. Disp. 2017, 25, 98–107. [Google Scholar] [CrossRef]
- Lee, J.-M.; Cho, I.-T.; Lee, J.-H.; Kwon, H.-I. Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors. Appl. Phys. Lett. 2008, 93, 093504. [Google Scholar] [CrossRef]
- Xu, P.-R.; Yao, R.-H. Threshold-voltage shift model based on electron tunneling under positive gate bias stress for amorphous InGaZnO thin-film transistors. Displays 2018, 53, 14–17. [Google Scholar] [CrossRef]
- Wang, L.L.; Liu, T.C.; Cai, Y.; Zhang, S. Thin-film transistor Vth shift model based on kinetics of electron transfer in gate dielectric. IEEE Trans. Electron Devices 2014, 61, 1436–1443. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, J.-H.; Park, J.-H.; Park, W.; Feng, J.; Eun, J.-S.; Lee, J.; Lee, S.-H.; Jang, J.; Kang, I.M.; Kim, D.-K.; et al. Dependence of Positive Bias Stress Instability on Threshold Voltage and Its Origin in Solution-Processed Aluminum-Doped Indium Oxide Thin-Film Transistors. Nanomaterials 2024, 14, 466. https://doi.org/10.3390/nano14050466
Na J-H, Park J-H, Park W, Feng J, Eun J-S, Lee J, Lee S-H, Jang J, Kang IM, Kim D-K, et al. Dependence of Positive Bias Stress Instability on Threshold Voltage and Its Origin in Solution-Processed Aluminum-Doped Indium Oxide Thin-Film Transistors. Nanomaterials. 2024; 14(5):466. https://doi.org/10.3390/nano14050466
Chicago/Turabian StyleNa, Jeong-Hyeon, Jun-Hyeong Park, Won Park, Junhao Feng, Jun-Su Eun, Jinuk Lee, Sin-Hyung Lee, Jaewon Jang, In Man Kang, Do-Kyung Kim, and et al. 2024. "Dependence of Positive Bias Stress Instability on Threshold Voltage and Its Origin in Solution-Processed Aluminum-Doped Indium Oxide Thin-Film Transistors" Nanomaterials 14, no. 5: 466. https://doi.org/10.3390/nano14050466
APA StyleNa, J. -H., Park, J. -H., Park, W., Feng, J., Eun, J. -S., Lee, J., Lee, S. -H., Jang, J., Kang, I. M., Kim, D. -K., & Bae, J. -H. (2024). Dependence of Positive Bias Stress Instability on Threshold Voltage and Its Origin in Solution-Processed Aluminum-Doped Indium Oxide Thin-Film Transistors. Nanomaterials, 14(5), 466. https://doi.org/10.3390/nano14050466