Enhanced Aluminum-Ion Storage Properties of N-Doped Titanium Dioxide Electrode in Aqueous Aluminum-Ion Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis of N-TiO2
2.2. Structure Characterization of Materials
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Structure and Morphology
3.2. Electrochemical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muldoon, J.; Bucur, C.B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magnesium and beyond. Chem. Rev. 2014, 114, 11683–11720. [Google Scholar] [CrossRef]
- Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, S.; Ji, Y.; Ma, J.; Yu, H. Emerging Nonaqueous Aluminum-Ion Batteries: Challenges, Status, and Perspectives. Adv. Mater. 2018, 30, e1706310. [Google Scholar] [CrossRef]
- Han, X.; Bai, Y.; Zhao, R.; Li, Y.; Wu, F.; Wu, C. Electrolytes for rechargeable aluminum batteries. Prog. Mater. Sci. 2022, 128, 100960. [Google Scholar] [CrossRef]
- Li, R.; Xu, C.; Wu, X.; Zhang, J.; Yuan, X.; Wang, F.; Yao, Q.; Sadeeq Balogun, M.; Lu, Z.; Deng, J. Aluminum-ion storage reversibility in a novel spinel Al2/3Li1/3Mn2O4 cathode for aqueous rechargeable aluminum batteries. Energy Storage Mater. 2022, 53, 514–522. [Google Scholar] [CrossRef]
- Kong, D.; Fan, H.; Ding, X.; Hu, H.; Zhou, L.; Li, B.; Chi, C.; Wang, X.; Wang, Y.; Wang, X.; et al. Realizing a long lifespan aluminum-ion battery through the anchoring effect between Polythiophene and carboxyl modified carbon nanotube. Electrochim. Acta 2021, 395, 139212. [Google Scholar] [CrossRef]
- Wu, X.; Qin, N.; Wang, F.; Li, Z.; Qin, J.; Huang, G.; Wang, D.; Liu, P.; Yao, Q.; Lu, Z.; et al. Reversible aluminum ion storage mechanism in Ti-deficient rutile titanium dioxide anode for aqueous aluminum-ion batteries. Energy Storage Mater. 2021, 37, 619–627. [Google Scholar] [CrossRef]
- Li, Z.; Xiang, K.; Xing, W.; Carter, W.C.; Chiang, Y.M. Reversible Aluminum-Ion Intercalation in Prussian Blue Analogs and Demonstration of a High-Power Aluminum-Ion Asymmetric Capacitor. Adv. Energy Mater. 2014, 5, 1401410. [Google Scholar] [CrossRef]
- Liu, S.; Hu, J.J.; Yan, N.F.; Pan, G.L.; Li, G.R.; Gao, X.P. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy Environ. Sci. 2012, 5, 9743–9746. [Google Scholar] [CrossRef]
- Li, C.; Hou, C.-C.; Chen, L.; Kaskel, S.; Xu, Q. Rechargeable Al-ion batteries. EnergyChem 2021, 3, 100049. [Google Scholar] [CrossRef]
- Angell, M.; Zhu, G.; Lin, M.C.; Rong, Y.; Dai, H. Ionic Liquid Analogs of AlCl3 with Urea Derivatives as Electrolytes for Aluminum Batteries. Adv. Funct. Mater. 2019, 30, 1901928. [Google Scholar] [CrossRef]
- Tang, W.; Deng, L.; Guo, L.; Zhou, S.; Jiang, Q.; Luo, J. Reversible aqueous aluminum metal batteries enabled by a water-in-salt electrolyte. Green Energy Environ. 2023, in press. [CrossRef]
- Jiao, S.; Lei, H.; Tu, J.; Zhu, J.; Wang, J.; Mao, X. An industrialized prototype of the rechargeable Al/AlCl3-[EMIm]Cl/graphite battery and recycling of the graphitic cathode into graphene. Carbon 2016, 109, 276–281. [Google Scholar] [CrossRef]
- Agiorgousis, M.L.; Sun, Y.-Y.; Zhang, S. The Role of Ionic Liquid Electrolyte in an Aluminum–Graphite Electrochemical Cell. ACS Energy Lett. 2017, 2, 689–693. [Google Scholar] [CrossRef]
- Yu, X.; Wang, B.; Gong, D.; Xu, Z.; Lu, B. Graphene Nanoribbons on Highly Porous 3D Graphene for High-Capacity and Ultrastable Al-Ion Batteries. Adv. Mater. 2017, 29, 1604118. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Wu, F.; Wang, Z.; Ling, L.; Yang, H.; Gao, Y.; Guo, S.; Suo, L.; Li, H.; Xu, H.; et al. Reversible Al3+ storage mechanism in anatase TiO2 cathode material for ionic liquid electrolyte-based aluminum-ion batteries. J. Energy Chem. 2020, 51, 72–80. [Google Scholar] [CrossRef]
- Gu, S.; Wang, H.; Wu, C.; Bai, Y.; Li, H.; Wu, F. Confirming reversible Al3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 2017, 6, 9–17. [Google Scholar] [CrossRef]
- Joseph, J.; O’Mullane, A.P.; Ostrikov, K. Hexagonal Molybdenum Trioxide (h-MoO3) as an Electrode Material for Rechargeable Aqueous Aluminum-Ion Batteries. ChemElectroChem 2019, 6, 6002–6008. [Google Scholar] [CrossRef]
- Jadhav, A.L.; Xu, J.H.; Messinger, R.J. Quantitative Molecular-Level Understanding of Electrochemical Aluminum-Ion Intercalation into a Crystalline Battery Electrode. ACS Energy Lett. 2020, 5, 2842–2848. [Google Scholar] [CrossRef]
- Zhao, Z.; Hu, Z.; Jiao, R.; Tang, Z.; Dong, P.; Li, Y.; Li, S.; Li, H. Tailoring multi-layer architectured FeS2@C hybrids for superior sodium-, potassium- and aluminum-ion storage. Energy Storage Mater. 2019, 22, 228–234. [Google Scholar] [CrossRef]
- An, C.; Wang, M.; Li, W.; Xu, L.; Wang, Y. Large-scale Co9S8@C hybrids with tunable carbon thickness for high-rate and long-term performances of an aqueous battery. Nanoscale 2019, 11, 3741–3747. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Ju, S.; Xu, T.; Yu, X. Spatial Isolation-Inspired Ultrafine CoSe2 for High-Energy Aluminum Batteries with Improved Rate Cyclability. ACS Nano 2021, 15, 13662–13673. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ren, Y.; Li, Z.; Huang, Y. Phase Engineering of Nonstoichiometric Cu2-xSe as Anode for Aqueous Zn-Ion Batteries. ACS Nano 2023, 17, 18507–18516. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, D.; Niu, F.; Li, X.; Wang, C.; Yang, J. FeFe(CN)6 Nanocubes as a Bipolar Electrode Material in Aqueous Symmetric Sodium-Ion Batteries. Chempluschem 2017, 82, 1170–1173. [Google Scholar] [CrossRef] [PubMed]
- Ru, Y.; Zheng, S.; Xue, H.; Pang, H. Potassium cobalt hexacyanoferrate nanocubic assemblies for high-performance aqueous aluminum ion batteries. Chem. Eng. J. 2020, 382, 122853. [Google Scholar] [CrossRef]
- Lv, H.; Yang, S.; Li, C.; Han, C.; Tang, Y.; Li, X.; Wang, W.; Li, H.; Zhi, C. Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H2PO4− to Al3+ and an electrochromic Al ion battery. Energy Storage Mater. 2021, 39, 412–418. [Google Scholar] [CrossRef]
- Xiong, T.; He, B.; Zhou, T.; Wang, Z.; Wang, Z.; Xin, J.; Zhang, H.; Zhou, X.; Liu, Y.; Wei, L. Stretchable fiber-shaped aqueous aluminum ion batteries. EcoMat 2022, 4, e12218. [Google Scholar] [CrossRef]
- Wang, P.; Chen, Z.; Ji, Z.; Feng, Y.; Wang, J.; Liu, J.; Hu, M.; Wang, H.; Gan, W.; Huang, Y. A flexible aqueous Al ion rechargeable full battery. Chem. Eng. J. 2019, 373, 580–586. [Google Scholar] [CrossRef]
- Wessells, C.D.; Huggins, R.A.; Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2011, 2, 550. [Google Scholar] [CrossRef] [PubMed]
- Ambroz, F.; Macdonald, T.J.; Nann, T. Trends in Aluminium-Based Intercalation Batteries. Adv. Energy Mater. 2017, 7, 1602093. [Google Scholar] [CrossRef]
- Walter, M.; Kravchyk, K.V.; Bofer, C.; Widmer, R.; Kovalenko, M.V. Polypyrenes as High-Performance Cathode Materials for Aluminum Batteries. Adv. Mater. 2018, 30, e1705644. [Google Scholar] [CrossRef]
- Bitenc, J.; Lindahl, N.; Vizintin, A.; Abdelhamid, M.E.; Dominko, R.; Johansson, P. Concept and electrochemical mechanism of an Al metal anode–organic cathode battery. Energy Storage Mater. 2020, 24, 379–383. [Google Scholar] [CrossRef]
- Jia, B.E.; Thang, A.Q.; Yan, C.; Liu, C.; Lv, C.; Zhu, Q.; Xu, J.; Chen, J.; Pan, H.; Yan, Q. Rechargeable Aqueous Aluminum-Ion Battery: Progress and Outlook. Small 2022, 18, e2107773. [Google Scholar] [CrossRef]
- Žerjav, G.; Žižek, K.; Zavašnik, J.; Pintar, A. Brookite vs. rutile vs. anatase: What`s behind their various photocatalytic activities? J. Environ. Chem. Eng. 2022, 10, 107722. [Google Scholar] [CrossRef]
- Tang, W.; Xuan, J.; Wang, H.; Zhao, S.; Liu, H. First-principles investigation of aluminum intercalation and diffusion in TiO2 materials: Anatase versus rutile. J. Power Sources 2018, 384, 249–255. [Google Scholar] [CrossRef]
- He, Q.; Sun, Z.; Shi, X.; Wu, W.; Cheng, J.; Zhuo, R.; Zhang, Z.; Wang, J. Electrochemical Performance Enhancement of Nitrogen-Doped TiO2 for Lithium-Ion Batteries Investigated by a Film Electrode Model. Energy Fuels 2021, 35, 2717–2726. [Google Scholar] [CrossRef]
- Liu, Y.; Sang, S.; Wu, Q.; Lu, Z.; Liu, K.; Liu, H. The electrochemical behavior of Cl− assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum ion batteries. Electrochim. Acta 2014, 143, 340–346. [Google Scholar] [CrossRef]
- Lahan, H.; Boruah, R.; Hazarika, A.; Das, S.K. Anatase TiO2 as an Anode Material for Rechargeable Aqueous Aluminum-Ion Batteries: Remarkable Graphene Induced Aluminum Ion Storage Phenomenon. J. Phys. Chem. C 2017, 121, 26241–26249. [Google Scholar] [CrossRef]
- Ojeda, M.; Chen, B.; Leung, D.Y.C.; Xuan, J.; Wang, H. A Hydrogel Template Synthesis of TiO2 Nanoparticles for Aluminium-ion Batteries. Energy Procedia 2017, 105, 3997–4002. [Google Scholar] [CrossRef]
- Kazazi, M.; Abdollahi, P.; Mirzaei-Moghadam, M. High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries. Solid. State Ion. 2017, 300, 32–37. [Google Scholar] [CrossRef]
- Holland, A.W.; McKerracher, R.; Cruden, A.; Wills, R.G.A. TiO2 nanopowder as a high rate, long cycle life electrode in aqueous aluminium electrolyte. Mater. Today Energy 2018, 10, 208–213. [Google Scholar] [CrossRef]
- Tong, M.-H.; Chen, Y.-X.; Lin, S.-W.; Zhao, H.-P.; Chen, R.; Jiang, X.; Shi, H.-Y.; Zhu, M.-L.; Zhou, Q.-Q.; Lu, C.-Z. Synchronous electrochemical anodization: A novel strategy for preparing cerium doped TiO2 nanotube arrays toward visible-light PEC water splitting. Electrochim. Acta 2023, 463, 142793. [Google Scholar] [CrossRef]
- Wang, X.-J.; Yang, W.-Y.; Li, F.-T.; Xue, Y.-B.; Liu, R.-H.; Hao, Y.-J. In Situ Microwave-Assisted Synthesis of Porous N-TiO2/g-C3N4 Heterojunctions with Enhanced Visible-Light Photocatalytic Properties. Ind. Eng. Chem. Res. 2013, 52, 17140–17150. [Google Scholar] [CrossRef]
- Lu, T.; Wang, Y.; Wang, Y.; Zhou, L.; Yang, X.; Su, Y. Synthesis of Mesoporous Anatase TiO2 Sphere with High Surface Area and Enhanced Photocatalytic Activity. J. Mater. Sci. Technol. 2017, 33, 300–304. [Google Scholar] [CrossRef]
- Tang, X.; Chu, W.; Qian, J.; Lin, J.; Cao, G. Low Temperature Synthesis of Large-Size Anatase TiO2 Nanosheets with Enhanced Photocatalytic Activities. Small 2017, 13, 1701964. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, C.Y.; Liu, Y.; Zhang, Z.Y. Surface-enhanced Raman scattering effect for Ag/TiO2 composite particles. Appl. Surf. Sci. 1999, 147, 52–57. [Google Scholar] [CrossRef]
- Ma, H.L.; Yang, J.Y.; Dai, Y.; Zhang, Y.B.; Lu, B.; Ma, G.H. Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Appl. Surf. Sci. 2007, 253, 7497–7500. [Google Scholar] [CrossRef]
- Li, N.; Zou, X.; Liu, M.; Wei, L.; Shen, Q.; Bibi, R.; Xu, C.; Ma, Q.; Zhou, J. Enhanced Visible Light Photocatalytic Hydrogenation of CO2 into Methane over a Pd/Ce-TiO2 Nanocomposition. J. Phys. Chem. C 2017, 121, 25795–25804. [Google Scholar] [CrossRef]
- Ren, Y.; Shi, X.; Xia, P.; Li, S.; Lv, M.; Wang, Y.; Mao, Z. In Situ Raman Investigation of TiO2 Nanotube Array-Based Ultraviolet Photodetectors: Effects of Nanotube Length. Molecules 2020, 25, 1854. [Google Scholar] [CrossRef] [PubMed]
- Santhosh Kumar, R.; Govindan, K.; Ramakrishnan, S.; Kim, A.R.; Kim, J.-S.; Yoo, D.J. Fe3O4 nanorods decorated on polypyrrole/reduced graphene oxide for electrochemical detection of dopamine and photocatalytic degradation of acetaminophen. Appl. Surf. Sci. 2021, 556, 149765. [Google Scholar] [CrossRef]
- Tamilarasi, S.; Kumar, R.S.; Cho, K.-B.; Kim, C.-J.; Yoo, D.J. High-performance electrochemical detection of glucose in human blood serum using a hierarchical NiO2 nanostructure supported on phosphorus doped graphene. Mater. Today Chem. 2023, 34, 101765. [Google Scholar] [CrossRef]
- Singh, M.K.; Mehata, M.S. Phase-dependent optical and photocatalytic performance of synthesized titanium dioxide (TiO2) nanoparticles. Optik 2019, 193, 163011. [Google Scholar] [CrossRef]
- Nasir, M.; Bagwasi, S.; Jiao, Y.; Chen, F.; Tian, B.; Zhang, J. Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method. Chem. Eng. J. 2014, 236, 388–397. [Google Scholar] [CrossRef]
- Deng, X.; Wei, Z.; Cui, C.; Liu, Q.; Wang, C.; Ma, J. Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J. Mater. Chem. A 2018, 6, 4013–4022. [Google Scholar] [CrossRef]
- Wang, Q.; He, H.; Luan, J.; Tang, Y.; Huang, D.; Peng, Z.; Wang, H. Synergistic effect of N-doping and rich oxygen vacancies induced by nitrogen plasma endows TiO2 superior sodium storage performance. Electrochim. Acta 2019, 309, 242–252. [Google Scholar] [CrossRef]
- He, Y.J.; Peng, J.F.; Chu, W.; Li, Y.Z.; Tong, D.G. Retracted Article: Black mesoporous anatase TiO2 nanoleaves: A high capacity and high rate anode for aqueous Al-ion batteries. J. Mater. Chem. A 2014, 2, 1721–1731. [Google Scholar] [CrossRef]
- Wang, S.; Kravchyk, K.V.; Pigeot-Rémy, S.; Tang, W.; Krumeich, F.; Wörle, M.; Bodnarchuk, M.I.; Cassaignon, S.; Durupthy, O.; Zhao, S.; et al. Anatase TiO2 Nanorods as Cathode Materials for Aluminum-Ion Batteries. ACS Appl. Nano Mater. 2019, 2, 6428–6435. [Google Scholar] [CrossRef]
- Holland, A.; McKerracher, R.; Cruden, A.; Wills, R. Electrochemically Treated TiO2 for Enhanced Performance in Aqueous Al-Ion Batteries. Materials 2018, 11, 2090. [Google Scholar] [CrossRef]
- Liu, S.; Pan, G.L.; Li, G.R.; Gao, X.P. Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J. Mater. Chem. A 2015, 3, 959–962. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, H.; Wang, X.; Bai, Y.; Zhu, N.; Guo, S.; Suo, L.; Li, H.; Xu, H.; Wu, C. The Compensation Effect Mechanism of Fe-Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminum-Ion Batteries. ChemSusChem 2020, 13, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Slater, M.D.; Balasubramanian, M.; Johnson, C.S.; Rajh, T. Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries. J. Phys. Chem. Lett. 2011, 2, 2560–2565. [Google Scholar] [CrossRef]
- Forghani, M.; Donne, S.W. Complications When Differentiating Charge Transfer Processes in Electrochemical Capacitor Materials: Assessment of Cyclic Voltammetry Data. J. Electrochem. Soc. 2019, 166, A1370–A1379. [Google Scholar] [CrossRef]
- Xia, X.; Chao, D.; Zhang, Y.; Zhan, J.; Zhong, Y.; Wang, X.; Wang, Y.; Shen, Z.X.; Tu, J.; Fan, H.J. Generic Synthesis of Carbon Nanotube Branches on Metal Oxide Arrays Exhibiting Stable High-Rate and Long-Cycle Sodium-Ion Storage. Small 2016, 12, 3048–3058. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef]
- Chen, T.; Wu, Z.; Xiang, W.; Wang, E.; Chen, T.; Guo, X.; Chen, Y.; Zhong, B. Cauliflower-like MnO@C/N composites with multiscale, expanded hierarchical ordered structures as electrode materials for Lithium- and Sodium-ion batteries. Electrochim. Acta 2017, 246, 931–940. [Google Scholar] [CrossRef]
Electrode | Salts | Concentration | Specific Capacity (mAh g−1) | Capacity Retention | Refs. |
---|---|---|---|---|---|
TiO2-NTAs | AlCl3 | 1 M | 75 (4 mA cm−2) | - | [37] |
G-TiO2 | AlCl3 | 1 M | 33 (6.25 A g−1) | - | [56] |
Ti-deficient rutile TiO2 | NaCl, AlCl3 | 1:1 | 78.3 (3 A g−1) | - | [7] |
TiO2 | AlCl3, EMIMCl | 1:1 | 40 (500 mA g−1) | 75% (100 Cycles) | [57] |
TiO2 | AlCl3, KCl | 1:1 | 15.3 (10 A g−1) | - | [58] |
CuHCF | Al2(SO4)3 | 0.5 M | 46.9 (200 mA g−1) | 54.9% (1000 Cycles) | [59] |
KNHCF | Al(OTF)3 | 5 M | 46.5 (20 mA g−1) | 52% (500 Cycles) | [60] |
N-TiO2 | AlCl3 | 1 M | 43.2 (3 A g−1) | 37% (100 Cycles) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, L.; Wu, X.; Li, R.; Zhao, F.; Liu, P.; Wang, F.; Liu, D.; Yao, Q.; Deng, J. Enhanced Aluminum-Ion Storage Properties of N-Doped Titanium Dioxide Electrode in Aqueous Aluminum-Ion Batteries. Nanomaterials 2024, 14, 472. https://doi.org/10.3390/nano14050472
Jian L, Wu X, Li R, Zhao F, Liu P, Wang F, Liu D, Yao Q, Deng J. Enhanced Aluminum-Ion Storage Properties of N-Doped Titanium Dioxide Electrode in Aqueous Aluminum-Ion Batteries. Nanomaterials. 2024; 14(5):472. https://doi.org/10.3390/nano14050472
Chicago/Turabian StyleJian, Le, Xibing Wu, Ruichun Li, Fangzheng Zhao, Peng Liu, Feng Wang, Daosheng Liu, Qingrong Yao, and Jianqiu Deng. 2024. "Enhanced Aluminum-Ion Storage Properties of N-Doped Titanium Dioxide Electrode in Aqueous Aluminum-Ion Batteries" Nanomaterials 14, no. 5: 472. https://doi.org/10.3390/nano14050472
APA StyleJian, L., Wu, X., Li, R., Zhao, F., Liu, P., Wang, F., Liu, D., Yao, Q., & Deng, J. (2024). Enhanced Aluminum-Ion Storage Properties of N-Doped Titanium Dioxide Electrode in Aqueous Aluminum-Ion Batteries. Nanomaterials, 14(5), 472. https://doi.org/10.3390/nano14050472