Ultra-Thin Ion Exchange Membranes by Low Ionomer Blending for Energy Harvesting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membrane Synthesis
2.2. Stress–Strain Curve Testing
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Mechanical Strength Characterization
3.2. Membrane Thickness Characteristics
3.3. Permselectivity in Relation to IEC
3.4. Concentration-Dependent I–V Curves
3.5. Energy Harvesting Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Artal, R.; Sokol, R.; Neuman, M.; Burstein, A.; Stojkov, J. The mechanical properties of prematurely and non-prematurely ruptured membranes: Methods and preliminary results. Am. J. Obstet. Gynecol. 1976, 125, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Poblano, A.; Lope Huerta, M.; Martínez, J.M.; Falcón, H.D. Pattern-visual evoked potentials in thinner abusers. Arch. Med. Res. 1996, 27, 531–533. [Google Scholar] [PubMed]
- Mandache, E.; Gherghiceanu, M. Ultrastructural Defects of the Glomerular Basement Membranes Associated with Primary Glomerular Nephropathies. Ultrastruct. Pathol. 2004, 28, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.S.; Wen, H.Y.; Chen, Y.Y.; Hung, P.H.; Hsieh, T.L.; Huang, W.Y.; Chang, M.Y. Ionomer Membranes Produced from Hexaarylbenzene-Based Partially Fluorinated Poly(arylene ether) Blends for Proton Exchange Membrane Fuel Cells. Membranes 2022, 12, 582. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, Z.; Tian, H.; Wang, S.; Zhang, B.; Cao, Y.; Wu, H. Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone). J. Power Sources 2015, 288, 384–392. [Google Scholar] [CrossRef]
- Nam, J.; Hwang, T.; Kim, K.J.; Lee, D.C. A new high-performance ionic polymer–metal composite based on Nafion/polyimide blends. Smart Mater. Struct. 2017, 26, 035015. [Google Scholar] [CrossRef]
- Luo, X.; Holdcroft, S.; Mani, A.; Zhang, Y.; Shi, Z. Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: Consequences of a frustrated network. Phys. Chem. Chem. Phys. 2011, 13, 18055–18062. [Google Scholar] [CrossRef]
- Tanaka, M.; Koike, M.; Miyatake, K.; Watanabe, M. Synthesis and properties of anion conductive ionomers containing fluorenyl groups for alkaline fuel cell applications. Polym. Chem. 2011, 2, 99–106. [Google Scholar] [CrossRef]
- Mubita, T.; Porada, S.; Aerts, P.; Van der Wal, A. Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance. J. Membr. Sci. 2020, 607, 118000. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Ling, Y.; Zhang, Q.; Yu, X.; Cai, W. Bottom-up Design of High-Performance Pt Electrocatalysts Supported on Carbon Nanotubes with Homogeneous Ionomer Distribution. ChemCatChem 2017, 9, 3307–3313. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Zhang, H. Investigation of Nafion series membranes on the performance of iron-chromium redox flow battery. Energy Res. 2019, 43, 5590–5602. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Cházaro-Ruiz, L.F. Porous PVDF/PANI ion-exchange membrane (IEM) modified by polyvinylpyrrolidone (PVP) and lithium chloride in the application of membrane capacitive deionisation (MCDI). Water Sci. Technol. 2018, 77, 2311–2319. [Google Scholar] [CrossRef] [PubMed]
- Slade, S.; Campbell, S.A.; Ralph, T.; Walsh, F. Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes. J. Electrochem. Soc. 2002, 149, A1556. [Google Scholar] [CrossRef]
- Fang, F.; Liu, L.; Min, L.; Xu, L.; Zhang, W.; Wang, Y. Enhanced proton conductivity of Nafion membrane with electrically aligned sulfonated graphene nanoplates. Int. J. Hydrogen Energy 2021, 46, 17784–17792. [Google Scholar] [CrossRef]
- Galama, A.; Vermaas, D.; Veerman, J.; Saakes, M.; Rijnaarts, H.; Post, J.; Nijmeijer, K. Membrane resistance: The effect of salinity gradients over a cation exchange membrane. J. Membr. Sci. 2014, 467, 279–291. [Google Scholar] [CrossRef]
- Avci, A.H.; Messana, D.; Santoro, S.; Tufa, R.A.; Curcio, E.; Di Profio, G.; Fontananova, E. Energy Harvesting from Brines by Reverse Electrodialysis Using Nafion Membranes. Membranes 2020, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Rijnaarts, T. The Role of Membranes in the Use of Natural Salinity Gradients for Reverse Electrodialysis. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 3 May 2018. [Google Scholar]
- Khan, M.; Arsalan, M.; Khan, M.R. Membrane Applications of Polyaniline based Nano-composite Ion-exchanger and its Electrochemical Properties for Desalination. J. Membr. Sci. Technol. 2016, 6, 1000152. [Google Scholar]
- Nemati, M.; Hosseini, S.; Shabanian, M. Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal. J. Hazard. Mater. 2017, 337, 90–104. [Google Scholar] [CrossRef]
- Goel, P.; Bhuvanesh, E.; Mandal, P.; Shahi, V.; Bandyopadhyay, A.; Chattopadhyay, S. Di-quaternized graphene oxide based multi-cationic cross-linked monovalent selective anion exchange membrane for electrodialysis. Sep. Purif. Technol. 2021, 276, 119361. [Google Scholar] [CrossRef]
- Sun, C.; Negro, E.; Nale, A.; Pagot, G.; Vezzù, K.; Zawodzinski, T.A.; Meda, L.; Gambaro, C.; Di Noto, V. An efficient barrier toward vanadium crossover in redox flow batteries: The bilayer [Nafion/(WO3)x] hybrid inorganic-organic membrane. Electrochim. Acta 2021, 378, 138133. [Google Scholar] [CrossRef]
- Muriithi, B.; Loy, D. Proton conductivity of Nafion/ex situ Stöber silica nanocomposite membranes as a function of silica particle size and temperature. J. Mater. Sci. 2014, 49, 643–654. [Google Scholar] [CrossRef]
- Geise, G.M.; Cassady, H.; Paul, D.R.; Logan, B.; Hickner, M. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys. Chem. Chem. Phys. PCCP 2014, 16, 21673–21681. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhong, S.; Chen, L.; Peng, G.; Wang, F.F.; Yan, T.; Hu, J. Study on PVDF-HFP/PMMA/CMC blended polymer as membrane for lithium-ion batteries. Int. J. Electrochem. Sci. 2022, 17, 220145. [Google Scholar] [CrossRef]
- Jung, J.; Kim, J.; Lee, H.; Kang, I.; Choi, K. Multi-asymmetric ion-diode membrane for ion-exchange membrane electrodialysis. ACS Nano 2019, 13, 10761–10767. [Google Scholar] [CrossRef] [PubMed]
- Luciano, M.; Valentin, P.H. Electrodialysis Control Parameters. In Electrodialysis and Water Reuse: Novel Approaches; Andréa, M.B., Marco Antônio, S.R., Jane, Z.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 25–39. [Google Scholar]
- Zhou, Z.; Shinde, D.B.; Guo, D.; Cao, L.; Al Nuaimi, R.; Zhang, Y.; Enakonda, L.R.; Lai, Z. Flexible Ionic Conjugated Microporous Polymer Membranes for Fast and Selective Ion Transport. Adv. Funct. Mater. 2022, 32, 2108672. [Google Scholar] [CrossRef]
- Tian, Y.; Lin, C.; Wang, Z.; Jin, J. Polymer of intrinsic microporosity-based macroporous membrane with high thermal stability as a Li-ion battery separator. RSC Adv. 2019, 9, 21539–21543. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Suwansoontorn, A.; Hirose, D.; Takamura, Y.; Abbaszadehami, M.; Karan, K.; Nagao, Y. Quantitative Analysis of H+ Transportation of Nafion film on Different Substrate using Planar Inter Digitated Electrodes. In ECS Meeting Abstracts; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2022; Volume 41, p. 1515. [Google Scholar]
- Lin, C.-Y.; Chang, S.-F.; Kuo, K.-T.; Garner, S.; Pollard, S.C.; Chen, S.-H.; Hsu, J.-P. Essence of the Giant Reduction of Power Density in Osmotic Energy Conversion in Porous Membranes: Importance of Testing Area. ACS Appl. Mater. Interfaces 2023, 15, 43094–43101. [Google Scholar] [CrossRef]
- Guo, W.; Cao, L.; Xia, J.; Nie, F.; Ma, W.; Xue, J.; Song, Y.; Zhu, D.; Wang, Y.; Jiang, L. Energy Harvesting with Single-Ion-Selective Nanopores: A Concentration-Gradient-Driven Nanofluidic Power Source. Adv. Funct. Mater. 2010, 20, 1339–1344. [Google Scholar] [CrossRef]
- Long, R.; Kuang, Z.; Liu, Z.; Liu, W. Ionic thermal up-diffusion in nanofluidic salinity-gradient energy harvesting. Natl. Sci. Rev. 2019, 6, 1266–1273. [Google Scholar] [CrossRef]
- Cao, L.; Wen, Q.; Feng, Y.; Ji, D.; Li, H.; Li, N.; Jiang, L.; Guo, W. On the Origin of Ion Selectivity in Ultrathin Nanopores: Insights for Membrane-Scale Osmotic Energy Conversion. Adv. Funct. Mater. 2018, 28, 1804189. [Google Scholar] [CrossRef]
- Zyryanova, S.; Mareev, S.; Gil, V.; Korzhova, E.; Pismenskaya, N.; Sarapulova, V.; Rybalkina, O.; Boyko, E.; Larchet, C.; Dammak, L.; et al. How Electrical Heterogeneity Parameters of Ion-Exchange Membrane Surface Affect the Mass Transfer and Water Splitting Rate in Electrodialysis. Int. J. Mol. Sci. 2020, 21, 973. [Google Scholar] [CrossRef]
Sample | Nafion Content (wt%) | EW * (g/eq) | IEC (meq/g) |
---|---|---|---|
NR211, D2021 | 100 | 1100 | 0.910 |
100:0 | - | - | - |
90:10 | 10 | 110 | 0.091 |
80:20 | 20 | 220 | 0.182 |
70:30 | 30 | 330 | 0.273 |
60:40 | 40 | 440 | 0.364 |
50:50 | 50 | 550 | 0.455 |
Sample | (S/m2) | , (m2) | , |
---|---|---|---|
Electrolyte | 5669.48 | , - | 4.36347, 0.99990 |
NR211 | 2508.16 | , | 2.42269, 0.99986 |
100:0 | 5425.63 | , | 5.47738, 0.99985 |
90:10 | 4836.86 | , | 4.60411, 0.99986 |
80:20 | 4417.23 | , | 3.94884, 0.99988 |
70:30 | 3245.42 | , | 2.73311, 0.99989 |
60:40 | 2668.45 | , | 3.18344, 0.99979 |
50:50 | 2054.14 | , | 4.66627, 0.99923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, J.; Choi, S.; Kang, I.; Choi, K. Ultra-Thin Ion Exchange Membranes by Low Ionomer Blending for Energy Harvesting. Nanomaterials 2024, 14, 478. https://doi.org/10.3390/nano14050478
Jung J, Choi S, Kang I, Choi K. Ultra-Thin Ion Exchange Membranes by Low Ionomer Blending for Energy Harvesting. Nanomaterials. 2024; 14(5):478. https://doi.org/10.3390/nano14050478
Chicago/Turabian StyleJung, Jaehoon, Soyeong Choi, Ilsuk Kang, and Kiwoon Choi. 2024. "Ultra-Thin Ion Exchange Membranes by Low Ionomer Blending for Energy Harvesting" Nanomaterials 14, no. 5: 478. https://doi.org/10.3390/nano14050478
APA StyleJung, J., Choi, S., Kang, I., & Choi, K. (2024). Ultra-Thin Ion Exchange Membranes by Low Ionomer Blending for Energy Harvesting. Nanomaterials, 14(5), 478. https://doi.org/10.3390/nano14050478