A Novel PDMS-Based Flexible Thermoelectric Generator Fabricated by Ag2Se and PEDOT:PSS/Multi-Walled Carbon Nanotubes with High Output Performance Optimized by Embedded Eutectic Gallium–Indium Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication and Characterization of the Thermoelectric Columns
2.3. Theoretical Simulations
2.4. Fabrication of the FTEGs
2.5. Characterization of the FTEGs
3. Results
3.1. Material Properties
3.2. Design and Optimization of FTEG
3.3. FTEG Performance Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Shi, Y.; Mei, D.; Chen, Z. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl. Energy 2018, 215, 690–698. [Google Scholar] [CrossRef]
- Gao, J.; Shang, K.; Ding, Y.; Wen, Z. Material and configuration design strategies towards flexible and wearable power supply devices: A review. J. Mater. Chem. A 2021, 9, 8950–8965. [Google Scholar] [CrossRef]
- Rubab, N.; Kim, S.-W. Self-powered Sensors based on Piezoelectric Nanogenerators. J. Sens. Sci. Technol. 2022, 31, 293–300. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, Y. Boosting the Durability of Triboelectric Nanogenerators: A Critical Review and Prospect. Adv. Funct. Mater. 2023, 33, 2113407. [Google Scholar] [CrossRef]
- Hatamvand, M.; Kamrani, E.; Lira-Cantú, M.; Madsen, M.; Patil, B.R.; Vivo, P.; Mehmood, M.S.; Numan, A.; Ahmed, I.; Zhan, Y. Recent advances in fiber-shaped and planar-shaped textile solar cells. Nano Energy 2020, 71, 104609. [Google Scholar] [CrossRef]
- Kim, S.; Na, Y.; Nam, C.; Jeong, C.K.; Kim, K.T.; Park, K.-I. Highly tailorable, ultra-foldable, and resorbable thermoelectric paper for origami-enabled energy generation. Nano Energy 2022, 103, 107824. [Google Scholar] [CrossRef]
- DabinPark; Kim, J. A Review on Thermoelectric Technology: Conductive Polymer Based Thermoelectric Materials. J. Korean Inst. Electr. Electron. Mater. Eng. 2022, 35, 203–214. [Google Scholar] [CrossRef]
- Jin, L.; Hao, Y.; Tareen, A.K.; Khan, K.; Wageh, S.; Al-Hartomy, O.A.; Al-Sehemi, A.G.; Zhang, H.; Zhang, Y. Tellurium/polymers for flexible thermoelectrics: Status and challenges. J. Mater. Chem. A 2023, 11, 3771–3788. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, Y.; Yan, Z.; Zhang, Z.; Zhang, Y.; Shi, P.; Xue, C. Screen-Printed Flexible Thermoelectric Device Based on Hybrid Silver Selenide/PVP Composite Films. Nanomaterials 2021, 11, 2042. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, D.; Yan, Z.; Zhang, Z.; Zheng, Y.; Zhang, Y.; Xue, C. Preparation and characterization of the Ag2Se flexible films tuned by PVP for wearable thermoelectric generator. J. Mater. Sci. Mater. Electron. 2021, 32, 20295–20305. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Guo, R.; Zhang, Z.; Liu, D.; Xue, C. Effect of L-Ascorbic Acid Solution Concentration on the Thermoelectric Properties of Silver Selenide Flexible Films Prepared by Vacuum-Assisted Filtration. Nanomaterials 2022, 12, 624. [Google Scholar] [CrossRef]
- Yan, Z.; Zhao, Y.; Liu, D.; Zhang, Z.; Zheng, Y.; Cui, J.; Zhang, Y.; Xue, C. Thermoelectric properties of flexible PEDOT:PSS-based films tuned by SnSe via the vacuum filtration method. RSC Adv. 2020, 10, 43840–43846. [Google Scholar] [CrossRef]
- Deng, W.; Deng, L.; Li, Z.; Zhang, Y.; Chen, G. Synergistically Boosting Thermoelectric Performance of PEDOT:PSS/SWCNT Composites via the Ion-Exchange Effect and Promoting SWCNT Dispersion by the Ionic Liquid. ACS Appl. Mater. Interfaces 2021, 13, 12131–12140. [Google Scholar] [CrossRef]
- Imae, I.; Yamane, H.; Imato, K.; Ooyama, Y. Thermoelectric properties of PEDOT:PSS/SWCNT composite films with controlled carrier density. Compos. Commun. 2021, 27, 100897. [Google Scholar] [CrossRef]
- Zhang, L.; Harima, Y.; Imae, I. Highly improved thermoelectric performances of PEDOT:PSS/SWCNT composites by solvent treatment. Org. Electron. 2017, 51, 304–307. [Google Scholar] [CrossRef]
- Kim, Y.K.D.; Choi, K. Improved Thermoelectric Behavior of Nanotube-Filled Polymer Composites with Poly(3,4-ethylenedioxythiophene) Poly(styrenesulfonate). ACS Nano 2010, 4, 513–523. [Google Scholar] [CrossRef]
- Shi, X.L.; Zou, J.; Chen, Z.G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef]
- Huu, T.N.; Van, T.N.; Takahito, O. Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process. Appl. Energy 2018, 210, 467–476. [Google Scholar] [CrossRef]
- Dorling, B.; Ryan, J.D.; Craddock, J.D.; Sorrentino, A.; El Basaty, A.; Gomez, A.; Garriga, M.; Pereiro, E.; Anthony, J.E.; Weisenberger, M.C.; et al. Photoinduced p- to n-type Switching in Thermoelectric Polymer-Carbon Nanotube Composites. Adv. Mater. 2016, 28, 2782–2789. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, X.; Guo, R.; Zhao, Y.; Yang, C.; Zhang, L.; Liu, D.; Ren, Y. Preparation and Characterization of Screen-Printed Cu2S/PEDOT:PSS Hybrid Films for Flexible Thermoelectric Power Generator. Nanomaterials 2022, 12, 2430. [Google Scholar] [CrossRef]
- Park, K.T.; Choi, J.; Lee, B.; Ko, Y.; Jo, K.; Lee, Y.M.; Lim, J.A.; Park, C.R.; Kim, H. High-performance thermoelectric bracelet based on carbon nanotube ink printed directly onto a flexible cable. J. Mater. Chem. A 2018, 6, 19727–19734. [Google Scholar] [CrossRef]
- Hong, C.T.; Kang, Y.H.; Ryu, J.; Cho, S.Y.; Jang, K.-S. Spray-printed CNT/P3HT organic thermoelectric films and power generators. J. Mater. Chem. A 2015, 3, 21428–21433. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Shi, X.L.; Shi, X.; Chen, L.; Dargusch, M.S.; Zou, J.; Chen, Z.G. Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Adv. Mater. 2019, 31, 1807916. [Google Scholar] [CrossRef]
- Pham, N.H.; Farahi, N.; Kamila, H.; Sankhla, A.; Ayachi, S.; Müller, E.; de Boor, J. Ni and Ag electrodes for magnesium silicide based thermoelectric generators. Mater. Today Energy 2019, 11, 97–105. [Google Scholar] [CrossRef]
- Tan, M.; Deng, Y.; Hao, Y. Synergistic effect between ordered Bi2Te2.7Se0.3 pillar array and layered Ag electrode for remarkably enhancing thermoelectric device performance. Energy 2014, 77, 591–596. [Google Scholar] [CrossRef]
- Hu, S.; Chen, X.; Deng, Y.; Wang, Y.; Gao, H.; Zhu, W.; Cao, L.; Luo, B.; Zhu, Z.; Ma, G.; et al. Enhanced adhesion and conductivity ofCuelectrode on AlN substrate for thin film thermoelectric device. Funct. Mater. Lett. 2015, 8, 1550032. [Google Scholar] [CrossRef]
- Nguyen, Y.N.; Son, I. Diffusion bonding at the interface of Bi2Te3 thermoelectric modules. Mater. Chem. Phys. 2022, 292, 126813. [Google Scholar] [CrossRef]
- Le, W.; Yang, W.; Sheng, W.; Shuai, J. Research Progress of Interfacial Design between Thermoelectric Materials and Electrode Materials. ACS Appl. Mater. Interfaces 2023, 15, 12611–12621. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.-H.; Choi, S.-M.; Seo, W.-S.; Lee, M.-H.; Lee, K.H.; Park, H.-H. A study of electrodes for thermoelectric oxides. Electron. Mater. Lett. 2013, 9, 445–449. [Google Scholar] [CrossRef]
- Huo, W.; Xia, Z.; Gao, Y.; Guo, R.; Huang, X. Flexible Thermoelectric Devices with Flexible Heatsinks of Phase-Change Materials and Stretchable Interconnectors of Semi-Liquid Metals. ACS Appl. Mater. Interfaces 2023, 15, 29330–29340. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, V.P.; Sargolzaeiaval, Y.; Neumann, T.; Misra, V.; Vashaee, D.; Dickey, M.D.; Ozturk, M.C. Flexible thermoelectric generator with liquid metal interconnects and low thermal conductivity silicone filler. npj Flex. Electron. 2021, 5, 5. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, B.; Guo, Y.; Hou, C.; Li, Y.; Wang, H.; Zhang, Q. Flexible and stretchable thermoelectric devices with Ni-EGaIn liquid metal electrodes for cooling and low-grade-body heat harvesting. J. Alloys Compd. 2023, 945, 169260. [Google Scholar] [CrossRef]
- Suarez, F.; Parekh, D.P.; Ladd, C.; Vashaee, D.; Dickey, M.D.; Öztürk, M.C. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics. Appl. Energy 2017, 202, 736–745. [Google Scholar] [CrossRef]
- Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Cortez-Valadez, M.; Flores-López, N.S.; Flores-Acosta, M. Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Mater. Res. Bull. 2018, 99, 385–392. [Google Scholar] [CrossRef]
- Wang, X.; Meng, F.; Wang, T.; Li, C.; Tang, H.; Gao, Z.; Li, S.; Jiang, F.; Xu, J. High performance of PEDOT:PSS/SiC-NWs hybrid thermoelectric thin film for energy harvesting. J. Alloys Compd. 2018, 734, 121–129. [Google Scholar] [CrossRef]
- Xiong, J.; Jiang, F.; Shi, H.; Xu, J.; Liu, C.; Zhou, W.; Jiang, Q.; Zhu, Z.; Hu, Y. Liquid Exfoliated Graphene as Dopant for Improving the Thermoelectric Power Factor of Conductive PEDOT:PSS Nanofilm with Hydrazine Treatment. ACS Appl. Mater. Interfaces 2015, 7, 14917–14925. [Google Scholar] [CrossRef]
- Qu, G.; Bilal, R.; Xin, M.; Lv, Z.; Jin, G.; Tan, Y.; Yao, Z.; Cai, H. Phase transition-induced changes in the Raman properties of DMSO/benzene binary systems. Phys. Chem. Chem. Phys. 2021, 23, 9211–9217. [Google Scholar] [CrossRef]
- Boughaleb, J.; Arnaud, A.; Cottinet, P.J.; Monfray, S.; Gelenne, P.; Kermel, P.; Quenard, S.; Boeuf, F.; Guyomar, D.; Skotnicki, T. Thermal modeling and optimization of a thermally matched energy harvester. Smart Mater. Struct. 2015, 24, 085025. [Google Scholar] [CrossRef]
- Bahk, J.-H.; Fang, H.; Yazawa, K.; Shakouri, A. Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 2015, 3, 10362–10374. [Google Scholar] [CrossRef]
- Francioso, L.; De Pascali, C.; Sglavo, V.; Grazioli, A.; Masieri, M.; Siciliano, P. Modelling, fabrication and experimental testing of an heat sink free wearable thermoelectric generator. Energy Convers. Manag. 2017, 145, 204–213. [Google Scholar] [CrossRef]
- de Rivera, P.J.R.; de Rivera, M.R.; Socorro, F.; Callicó, G.M.; Calbet, J.A.L.; de Rivera, M.R. Heat flow, heat capacity and thermal resistance of localized surfaces of the human body using a new calorimetric sensor. J. Therm. Anal. Calorim. 2021, 147, 7385–7398. [Google Scholar] [CrossRef]
- Lee, D.; Park, H.; Park, G.; Kim, J.; Kim, H.; Cho, H.; Han, S.; Kim, W. Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device. Energy 2019, 188, 116019. [Google Scholar] [CrossRef]
- Xu, S.; Hong, M.; Li, M.; Sun, Q.; Yin, Y.; Liu, W.; Shi, X.; Dargusch, M.; Zou, J.; Chen, Z.-G. Two-dimensional flexible thermoelectric devices: Using modeling to deliver optimal capability. Appl. Phys. Rev. 2021, 8, 041404. [Google Scholar] [CrossRef]
- Finefrock, S.W.; Zhu, X.; Sun, Y.; Wu, Y. Flexible prototype thermoelectric devices based on Ag2Te and PEDOT:PSS coated nylon fibre. Nanoscale 2015, 7, 5598–5602. [Google Scholar] [CrossRef]
- Hsu, J.-H.; Choi, W.; Yang, G.; Yu, C. Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments. Org. Electron. 2017, 45, 182–189. [Google Scholar] [CrossRef]
Materials | Process | Electrode | Number | Power-Density (μW/cm2) | Ref. |
---|---|---|---|---|---|
Bi-Te compounds | bulk | EGaIn | 30 | 8.32 | [42] |
polyurethane (PU), graphene-composites | bulk | Semi-LM | 100 | 7.3 | [30] |
Bi0.5Sb1.5Te3, Bi2Se0.3Te2.7 | bulk | EGaIn | 64 | 5.6 | [33] |
Ag2Se | film | Ag | 6 | 8.0 | [9] |
Ag2Se | film | cooper | 20 | 1.43 | [43] |
Ag2Te, PEDOT:PSS | nylon | Ag | 4 | 0.6 | [44] |
Ag2Se, PEDOT:PSS/MWCNTs | bulk | EGaIn | 6 | 25.83 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, R.; Shi, W.; Guo, R.; Yang, C.; Chen, Y.; Wang, Y.; Cui, D.; Liu, D.; Xue, C. A Novel PDMS-Based Flexible Thermoelectric Generator Fabricated by Ag2Se and PEDOT:PSS/Multi-Walled Carbon Nanotubes with High Output Performance Optimized by Embedded Eutectic Gallium–Indium Electrodes. Nanomaterials 2024, 14, 542. https://doi.org/10.3390/nano14060542
Guo R, Shi W, Guo R, Yang C, Chen Y, Wang Y, Cui D, Liu D, Xue C. A Novel PDMS-Based Flexible Thermoelectric Generator Fabricated by Ag2Se and PEDOT:PSS/Multi-Walled Carbon Nanotubes with High Output Performance Optimized by Embedded Eutectic Gallium–Indium Electrodes. Nanomaterials. 2024; 14(6):542. https://doi.org/10.3390/nano14060542
Chicago/Turabian StyleGuo, Rui, Weipeng Shi, Rui Guo, Chenyu Yang, Yi Chen, Yonghua Wang, Danfeng Cui, Dan Liu, and Chenyang Xue. 2024. "A Novel PDMS-Based Flexible Thermoelectric Generator Fabricated by Ag2Se and PEDOT:PSS/Multi-Walled Carbon Nanotubes with High Output Performance Optimized by Embedded Eutectic Gallium–Indium Electrodes" Nanomaterials 14, no. 6: 542. https://doi.org/10.3390/nano14060542
APA StyleGuo, R., Shi, W., Guo, R., Yang, C., Chen, Y., Wang, Y., Cui, D., Liu, D., & Xue, C. (2024). A Novel PDMS-Based Flexible Thermoelectric Generator Fabricated by Ag2Se and PEDOT:PSS/Multi-Walled Carbon Nanotubes with High Output Performance Optimized by Embedded Eutectic Gallium–Indium Electrodes. Nanomaterials, 14(6), 542. https://doi.org/10.3390/nano14060542