A Conductive Microcavity Created by Assembly of Carbon Nanotube Buckypapers for Developing Electrochemically Wired Enzyme Cascades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Electrochemical Measurements
2.3. Preparation of Buckypaper
2.4. Preparation of a Buckypaper-Based Sandwich Containing HRP
2.5. Preparation of a Buckypaper-Based Sandwich Containing Two Enzymes
2.6. Determination of the Presence in Solution of Enzymes Due to the Loss of Enzymes from the Microcavity
3. Results and Discussion
3.1. Study of Redox Mediators for Conjugation with HRP
3.2. Determination of Optimal Ratio for Two Enzymes
3.3. Stability Assessment of GOx, HRP, and ABTS-Based Bioelectrodes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, M.W.; Kim, Y.H.; Bal, J.; Stephanie, R.; Baek, S.H.; Lee, S.K.; Park, C.Y.; Park, T.J. Rational design of bienzyme nanoparticles-based total cholesterol electrochemical sensors and the construction of cholesterol oxidase expression system. Sensors Actuators B Chem. 2021, 349, 130742. [Google Scholar] [CrossRef]
- Yan, Y.; Qiao, Z.; Hai, X.; Song, W.; Bi, S. Versatile electrochemical biosensor based on bi-enzyme cascade biocatalysis spatially regulated by DNA architecture. Biosens. Bioelectron. 2021, 174, 112827. [Google Scholar] [CrossRef]
- Franco, J.H.; Bonaldo, J.V.; Minteer, S.D.; De Andrade, A.R. Assembly of an improved hybrid cascade system for complete ethylene glycol oxidation: Enhanced catalytic performance for an enzymatic biofuel cell. Biosens. Bioelectron. 2022, 216, 114649. [Google Scholar] [CrossRef] [PubMed]
- Adachi, T.; Miyata, T.; Makino, F.; Tanaka, H.; Namba, K.; Kano, K.; Sowa, K.; Kitazumi, Y.; Shirai, O. Experimental and Theoretical Insights into Bienzymatic Cascade for Mediatorless Bioelectrochemical Ethanol Oxidation with Alcohol and Aldehyde Dehydrogenases. ACS Catalysis 2023, 13, 7955–7965. [Google Scholar] [CrossRef]
- Dong, M.; Gao, Z.; Zhang, Y.; Cai, J.; Li, J.; Xu, P.; Jiang, H.; Gu, J.; Wang, J. Ultrasensitive electrochemical biosensor for detection of circulating tumor cells based on a highly efficient enzymatic cascade reaction. RSC Advances 2023, 13, 12966–12972. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Chai, Y.; Yuan, R.; Zu, B.; Yuan, Y. Dual catalytic hairpin assembly and enzyme cascade catalysis amplification based sensitive dual-mode biosensor with significantly enhanced opposite signal readout. Sensors Actuators B Chem. 2021, 348, 130676. [Google Scholar] [CrossRef]
- Serleti, A.; Xiao, X.; Shortall, K.; Magner, E. Use of Self-Assembled Monolayers for the Sequential and Independent Immobilisation of Enzymes. ChemElectroChem 2021, 8, 3911–3916. [Google Scholar] [CrossRef]
- Bilal, M.; Hussain, N.; Américo-Pinheiro, J.H.P.; Almulaiky, Y.Q.; Iqbal, H.M.N. Multi-enzyme co-immobilized nano-assemblies: Bringing enzymes together for expanding bio-catalysis scope to meet biotechnological challenges. Int. J. Biol. Macromol. 2021, 186, 735–749. [Google Scholar] [CrossRef]
- Fan, S.; Liang, B.; Xiao, X.; Bai, L.; Tang, X.; Lojou, E.; Cosnier, S.; Liu, A. Controllable Display of Sequential Enzymes on Yeast Surface with Enhanced Biocatalytic Activity toward Efficient Enzymatic Biofuel Cells. J. Am. Chem. Soc. 2020, 142, 3222–3230. [Google Scholar] [CrossRef] [PubMed]
- Hickey, D.P.; Giroud, F.; Schmidtke, D.W.; Glatzhofer, D.T.; Minteer, S.D. Enzyme Cascade for Catalyzing Sucrose Oxidation in a Biofuel Cell. ACS Catalysis 2013, 3, 2729–2737. [Google Scholar] [CrossRef]
- Van Nguyen, K.; Giroud, F.; Minteer, S.D. Improved Bioelectrocatalytic Oxidation of Sucrose in a Biofuel Cell with an Enzyme Cascade Assembled on a DNA Scaffold. J. Electrochem. Soc. 2014, 161, H930. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Berenguer-Murcia, Á.; Carballares, D.; Morellon-Sterling, R.; Fernandez-Lafuente, R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol. Adv. 2021, 52, 107821. [Google Scholar] [CrossRef]
- Reyes-De-Corcuera, J.I.; Olstad, H.E.; García-Torres, R. Stability and Stabilization of Enzyme Biosensors: The Key to Successful Application and Commercialization. Annu. Rev. Food Sci. Technol. 2018, 9, 293–322. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.J.; Pattammattel, A.; Koshmerl, B.; Puglia, M.; Williams, C.; Kumar, C.V. “Stable-on-the-Table” Enzymes: Engineering the Enzyme–Graphene Oxide Interface for Unprecedented Kinetic Stability of the Biocatalyst. ACS Catal. 2016, 6, 339–347. [Google Scholar] [CrossRef]
- Sirisha, V.L.; Jain, A.; Jain, A. Chapter Nine—Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes. In Advances in Food and Nutrition Research; Kim, S.-K., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; Volume 79, pp. 179–211. [Google Scholar]
- Prodanović, O.; Prokopijević, M.; Spasojević, D.; Stojanović, Ž.; Radotić, K.; Knežević-Jugović, Z.D.; Prodanović, R. Improved Covalent Immobilization of Horseradish Peroxidase on Macroporous Glycidyl Methacrylate-Based Copolymers. Appl. Biochem. Biotechnol. 2012, 168, 1288–1301. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Yuan, L.; Li, M.; Wang, X.; Rao, D.; Bai, X.; Shi, K.; Xu, H.; Hou, S.; Yao, H. Co-immobilized bienzyme of horseradish peroxidase and glucose oxidase on dopamine-modified cellulose–chitosan composite beads as a high-efficiency biocatalyst for degradation of acridine. RSC Adv. 2022, 12, 23006–23016. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Pan, H.; Tian, S.; Su, L.; Hu, Z.; Qiao, C.; Liu, Q.; Zhou, C. Co-immobilization of bienzyme HRP/GOx on highly stable hierarchically porous MOF with enhanced catalytic activity and stability: Kinetic and thermodynamic studies. J. Environ. Chem. Eng. 2023, 11, 110684. [Google Scholar] [CrossRef]
- Azevedo, A.M.; Martins, V.C.; Prazeres, D.M.; Vojinović, V.; Cabral, J.M.; Fonseca, L.P. Horseradish peroxidase: A valuable tool in biotechnology. Biotechnol. Annu. Rev. 2003, 9, 199–247. [Google Scholar] [CrossRef]
- Yan, K.; Nandhakumar, P.; Bhatia, A.; Lee, N.-S.; Yoon, Y.H.; Yang, H. Electrochemical immunoassay based on choline oxidase-peroxidase enzymatic cascade. Biosens. Bioelectron. 2021, 171, 112727. [Google Scholar] [CrossRef]
- Fang, C.; Zhong, C.; Chen, N.; Yi, L.; Li, J.; Hu, W. Reusable OIRD Microarray Chips Based on a Bienzyme-Immobilized Polyaniline Nanowire Forest for Multiplexed Detection of Biological Small Molecules. Anal. Chem. 2021, 93, 10697–10703. [Google Scholar] [CrossRef]
- Shan, D.; Cosnier, S.; Mousty, C. HRP Wiring by Redox Active Layered Double Hydroxides: Application to the Mediated H2O2 Detection. Anal. Lett. 2003, 36, 909–922. [Google Scholar] [CrossRef]
- Chung, H.; Lim, W.; Park, C.; Jeon, B.; Park, J.; Chang, J. Inhibited reactivity of horseradish peroxidase by its conjugated proteins through redox mediated electrochemical interrogation. Electrochim. Acta 2023, 462, 142704. [Google Scholar] [CrossRef]
- Elouarzaki, K.; Bourourou, M.; Holzinger, M.; Le Goff, A.; Marks, R.S.; Cosnier, S. Freestanding HRP–GOx redox buckypaper as an oxygen-reducing biocathode for biofuel cell applications. Energy Environ. Sci. 2015, 8, 2069–2074. [Google Scholar] [CrossRef]
- Bocanegra-Rodríguez, S.; Molins-Legua, C.; Campíns-Falcó, P.; Giroud, F.; Gross, A.J.; Cosnier, S. Monofunctional pyrenes at carbon nanotube electrodes for direct electron transfer H2O2 reduction with HRP and HRP-bacterial nanocellulose. Biosens. Bioelectron. 2021, 187, 113304. [Google Scholar] [CrossRef] [PubMed]
- Bourbonnais, R.; Leech, D.; Paice, M.G. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1998, 1379, 381–390. [Google Scholar] [CrossRef]
- Sharma, L.; Sharma, A.; Singh, G. Redox Behaviour of Hydroquinone in Aqueous and Non-Aqueous Solutions; NISCAIR-CSIR: New Delhi, India, 1987. [Google Scholar]
- Quan, M.; Sanchez, D.; Wasylkiw, M.F.; Smith, D.K. Voltammetry of Quinones in Unbuffered Aqueous Solution: Reassessing the Roles of Proton Transfer and Hydrogen Bonding in the Aqueous Electrochemistry of Quinones. J. Am. Chem. Soc. 2007, 129, 12847–12856. [Google Scholar] [CrossRef]
- Srinivas, S.; Ashokkumar, K.; Sriraghavan, K.; Senthil Kumar, A. A prototype device of microliter volume voltammetric pH sensor based on carbazole–quinone redox-probe tethered MWCNT modified three-in-one screen-printed electrode. Sci. Rep. 2021, 11, 13905. [Google Scholar] [CrossRef]
- O’Reilly, J.E. Oxidation-reduction potential of the ferro-ferricyanide system in buffer solutions. Biochim. Biophys. Acta 1973, 292, 509–515. [Google Scholar] [CrossRef]
- Bogdanovskay, V.A.; Fridman, V.A.; Tarasevich, M.R.; Scheller, F. Bioelectrocatalysis by Immobilized Peroxidase: The Reaction Mechanism and the Possibility of Electroanalytical Detection of Both Inhibitors and Activators of Enzyme. Anal. Lett. 1994, 27, 2823–2847. [Google Scholar] [CrossRef]
- Almaz, Z.; Oztekin, A.; Abul, N.; Gerni, S.; Erel, D.; Kocak, S.M.; Sengül, M.E.; Ozdemir, H. A new approach for affinity-based purification of horseradish peroxidase. Biotechnol. Appl. Biochem. 2021, 68, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, J.; Zhao, X.; Lu, J.; Cui, Z. Separation of glucose oxidase and catalase using ultrafiltration with 300-kDa polyethersulfone membranes. J. Membr. Sci. 2007, 299, 222–228. [Google Scholar] [CrossRef]
- Dudkaitė, V.; Kairys, V.; Bagdžiūnas, G. Understanding the activity of glucose oxidase after exposure to organic solvents. J. Mater. Chem. B 2023, 11, 2409–2416. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeerapan, I.; Nedellec, Y.; Cosnier, S. A Conductive Microcavity Created by Assembly of Carbon Nanotube Buckypapers for Developing Electrochemically Wired Enzyme Cascades. Nanomaterials 2024, 14, 545. https://doi.org/10.3390/nano14060545
Jeerapan I, Nedellec Y, Cosnier S. A Conductive Microcavity Created by Assembly of Carbon Nanotube Buckypapers for Developing Electrochemically Wired Enzyme Cascades. Nanomaterials. 2024; 14(6):545. https://doi.org/10.3390/nano14060545
Chicago/Turabian StyleJeerapan, Itthipon, Yannig Nedellec, and Serge Cosnier. 2024. "A Conductive Microcavity Created by Assembly of Carbon Nanotube Buckypapers for Developing Electrochemically Wired Enzyme Cascades" Nanomaterials 14, no. 6: 545. https://doi.org/10.3390/nano14060545
APA StyleJeerapan, I., Nedellec, Y., & Cosnier, S. (2024). A Conductive Microcavity Created by Assembly of Carbon Nanotube Buckypapers for Developing Electrochemically Wired Enzyme Cascades. Nanomaterials, 14(6), 545. https://doi.org/10.3390/nano14060545