The Mechanism of Manipulating Chirality and Chiral Sensing Based on Chiral Plexcitons in a Strong-Coupling Regime
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chiroptical Responses of the Chiral Plexcitonic System
2.2. The Appearance of Double Rabi Splitting and Bisignate Anti-crossing Behaviors Follows the Extended Coupled-Mode Theory
2.3. Applications in Enantiomer Ratio Sensing by Using the Properties of the CD Spectra of the Chiral Plexcitonic System
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. The Field Distributions |E/E0|2 of Anti-bonding Mode and Bonding Mode
Appendix A.2. Numerical Implementation of Optical Chirality Density
Appendix A.3. Numerical Implementation of Chiral Sample
References
- Hendry, E.; Carpy, T.; Johnston, J.; Popland, M.; Mikhaylovskiy, R.V.; Lapthorn, A.J.; Kelly, S.M.; Barron, L.D.; Gadegaard, N.; Kadodwala, M. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 2010, 5, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, X.; Wang, W.; Sun, M.; Choi, W.J.; Kim, J.Y.; Hao, C.; Li, S.; Qu, A.; Lu, M.; et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 2022, 601, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Zhao, J.; Wang, H.; Li, B.; Li, K.; Shi, X.; Wan, K.; Ai, J.; Lv, J.; Wang, D.; et al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease. Nat. Commun. 2020, 11, 4790. [Google Scholar] [CrossRef] [PubMed]
- Berova, N.; Bari, L.D.; Pescitelli, G. Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem. Soc. Rev. 2007, 36, 914–931. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Xu, L.; Ma, W.; Wu, X.; Wang, L.; Kuang, H.; Xu, C. Unusual Circularly Polarized Photocatalytic Activity in Nanogapped Gold–Silver Chiroplasmonic Nanostructures. Adv. Funct. Mater. 2015, 25, 5816–5822. [Google Scholar] [CrossRef]
- Negrín-Montecelo, Y.; Movsesyan, A.; Gao, J.; Burger, S.; Wang, Z.M.; Nlate, S.; Pouget, E.; Oda, R.; Comesaña-Hermo, M.; Govorov, A.O.; et al. Chiral Generation of Hot Carriers for Polarization-Sensitive Plasmonic Photocatalysis. J. Am. Chem. Soc. 2022, 144, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hernandez, T.; Smith, K.W.; Jebeli, S.A.H.; Dai, A.X.; Warning, L.; Baiyasi, R.; McCarthy, L.A.; Guo, H.; Chen, D.H.; et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 2019, 365, 1475–1478. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, M.; Schäferling, M.; Duan, X.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735. [Google Scholar] [CrossRef]
- Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a Primary Target of Thalidomide Teratogenicity. Science 2010, 327, 1345–1350. [Google Scholar] [CrossRef]
- Alvarez-Rivera, G.; Bueno, M.; Ballesteros-Vivas, D.; Cifuentes, A. Chiral analysis in food science. TrAC Trends Anal. Chem. 2020, 123, 115761. [Google Scholar] [CrossRef]
- Warning, L.A.; Miandashti, A.R.; McCarthy, L.A.; Zhang, Q.; Landes, C.F.; Link, S. Nanophotonic Approaches for Chirality Sensing. ACS Nano 2021, 15, 15538–15566. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Du, W.; Zhang, Q.; Ávalos Ovando, O.; Wu, J.; Xu, Q.H.; Liu, N.; Okamoto, H.; Govorov, A.O.; Xiong, Q.; et al. Multidimensional nanoscopic chiroptics. Nat. Rev. Phys. 2022, 4, 113–124. [Google Scholar] [CrossRef]
- Wen, B.Y.; Wang, J.Y.; Shen, T.L.; Zhu, Z.W.; Guan, P.C.; Lin, J.S.; Peng, W.; Cai, W.W.; Jin, H.; Xu, Q.C.; et al. Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution. Light Sci. Appl. 2022, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Guan, J.; Hu, J.; Bourgeois, M.R.; Odom, T.W. Manipulating Light–Matter Interactions in Plasmonic Nanoparticle Lattices. Accounts Chem. Res. 2019, 52, 2997–3007. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Yang, J.; Sun, L.; Liu, C.; Yang, G.; Tao, Y.; Sun, X.; Zhang, B.; Xu, H.; Zhang, Q. Tuning the Plexcitonic Optical Chirality Using Discrete Structurally Chiral Plasmonic Nanoparticles. Nano Lett. 2023, 23, 11376–11384. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Zhang, W.; Liu, S.; Hu, A.; Zhao, J.; Ye, Y.; Chen, Y.; Qiu, C.W.; Gong, Q.; Lu, G. Steering valley-polarized emission of monolayer MoS 2 sandwiched in plasmonic antennas. Sci. Adv. 2020, 6, eaao0019. [Google Scholar] [CrossRef] [PubMed]
- Peruffo, N.; Bruschi, M.; Fresch, B.; Mancin, F.; Collini, E. Identification of Design Principles for the Preparation of Colloidal Plexcitonic Materials. Langmuir 2023, 39, 12793–12806. [Google Scholar] [CrossRef] [PubMed]
- Törmä, P.; Barnes, W.L. Strong coupling between surface plasmon polaritons and emitters: A review. Rep. Prog. Phys. 2015, 78, 013901. [Google Scholar] [CrossRef]
- Dovzhenko, D.S.; Ryabchuk, S.V.; Rakovich, Y.P.; Nabiev, I.R. Light–matter interaction in the strong coupling regime: Configurations, conditions, and applications. Nanoscale 2018, 10, 3589–3605. [Google Scholar] [CrossRef]
- Wei, H.; Yan, X.; Niu, Y.; Li, Q.; Jia, Z.; Xu, H. Plasmon–Exciton Interactions: Spontaneous Emission and Strong Coupling. Adv. Funct. Mater. 2021, 31, 2100889. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, M. Plexcitonics: Plasmon–exciton coupling for enhancing spectroscopy, optical chirality, and nonlinearity. Nanoscale 2023, 15, 11834–11851. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yoo, S.; Park, Q.H. Microscopic Origin of Surface-Enhanced Circular Dichroism. ACS Photonics 2017, 4, 2047–2052. [Google Scholar] [CrossRef]
- Kim, T.; Park, Q.H. Molecular chirality detection using plasmonic and dielectric nanoparticles. Nanophotonics 2022, 11, 1897–1904. [Google Scholar] [CrossRef]
- Mun, J.; Rho, J. Importance of higher-order multipole transitions on chiral nearfield interactions. Nanophotonics 2019, 8, 941–948. [Google Scholar] [CrossRef]
- Lan, X.; Zhou, X.; McCarthy, L.A.; Govorov, A.O.; Liu, Y.; Link, S. DNA-Enabled Chiral Gold Nanoparticle–Chromophore Hybrid Structure with Resonant Plasmon–Exciton Coupling Gives Unusual and Strong Circular Dichroism. J. Am. Chem. Soc. 2019, 141, 19336–19341. [Google Scholar] [CrossRef]
- Goerlitzer, E.S.A.; Zapata-Herrera, M.; Ponomareva, E.; Feller, D.; Garcia-Etxarri, A.; Karg, M.; Aizpurua, J.; Vogel, N. Molecular-Induced Chirality Transfer to Plasmonic Lattice Modes. ACS Photonics 2023, 10, 1821–1831. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhou, Y.; Pan, X.; Zhang, Q.; Hu, N.; Li, H.; Wang, L.; Xue, Q.; Zhang, W.; Ni, W. Trace detection of chiral J-aggregated molecules adsorbed on single Au nanorods. Nanoscale 2023, 15, 10667–10676. [Google Scholar] [CrossRef]
- Guo, J.; Wu, F.; Song, G.; Huang, Y.; Jiao, R.; Yu, L. Diverse axial chiral assemblies of J-aggregates in plexcitonic nanoparticles. Nanoscale 2021, 13, 15812–15818. [Google Scholar] [CrossRef]
- Wu, F.; Guo, J.; Huang, Y.; Liang, K.; Jin, L.; Li, J.; Deng, X.; Jiao, R.; Liu, Y.; Zhang, J.; et al. Plexcitonic Optical Chirality: Strong Exciton–Plasmon Coupling in Chiral J-Aggregate-Metal Nanoparticle Complexes. ACS Nano 2021, 15, 2292–2300. [Google Scholar] [CrossRef]
- He, C.; Guo, J.; Jin, L.; Deng, X.; Li, J.; Liang, X.; Liang, K.; Yu, L. The Mechanism and Fine-Tuning of Chiral Plexcitons in the Strong Coupling Regime. Nano Lett. 2023, 23, 9428–9436. [Google Scholar] [CrossRef]
- Shen, X.; Zhan, P.; Kuzyk, A.; Liu, Q.; Asenjo-Garcia, A.; Zhang, H.; García De Abajo, F.J.; Govorov, A.; Ding, B.; Liu, N. 3D plasmonic chiral colloids. Nanoscale 2014, 6, 2077. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, G.; Fang, Y. Plasmon–exciton coupling between plasmons and chiral molecules in core–shell structure under circularly polarized light excitation. J. Appl. Phys. 2021, 129, 043104. [Google Scholar] [CrossRef]
- Wen, X.; Wang, S.; Liu, R.; Duan, R.; Hu, S.; Jiao, T.; Zhang, L.; Liu, M. Selenocystine and Photo-Irradiation Directed Growth of Helically Grooved Gold Nanoarrows. Small 2022, 18, 2104301. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.; Mychinko, M.; Gómez-Graña, S.; Morales-Vidal, J.; Obelleiro-Liz, M.; Heyvaert, W.; Vila-Liarte, D.; Zhuo, X.; Albrecht, W.; Zheng, G.; et al. Chiral Seeded Growth of Gold Nanorods Into Fourfold Twisted Nanoparticles with Plasmonic Optical Activity. Adv. Mater. 2023, 35, 2208299. [Google Scholar] [CrossRef]
- Nguyen, L.; Dass, M.; Ober, M.F.; Besteiro, L.V.; Wang, Z.M.; Nickel, B.; Govorov, A.O.; Liedl, T.; Heuer-Jungemann, A. Chiral Assembly of Gold–Silver Core–Shell Plasmonic Nanorods on DNA Origami with Strong Optical Activity. ACS Nano 2020, 14, 7454–7461. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Bian, J.; Chen, P.; Xie, M.; Chao, J.; Hu, W.; Lu, Y.; Zhang, W. Polarization-dispersive imaging spectrometer for scattering circular dichroism spectroscopy of single chiral nanostructures. Light Sci. Appl. 2022, 11, 64. [Google Scholar] [CrossRef]
- Dass, M.; Kuen, L.; Posnjak, G.; Burger, S.; Liedl, T. Visible wavelength spectral tuning of absorption and circular dichroism of DNA-assembled Au/Ag core–shell nanorod assemblies. Mater. Adv. 2022, 3, 3438–3445. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wu, F.; Han, Z.; Shang, Y.; Liu, F.; Yu, H.; Yu, L.; Li, N.; Ding, B. Strong Light–Matter Interactions in Chiral Plasmonic–Excitonic Systems Assembled on DNA Origami. Nano Lett. 2021, 21, 3573–3580. [Google Scholar] [CrossRef]
- Yin, X.; Schäferling, M.; Metzger, B.; Giessen, H. Interpreting Chiral Nanophotonic Spectra: The Plasmonic Born–Kuhn Model. Nano Lett. 2013, 13, 6238–6243. [Google Scholar] [CrossRef]
- Liang, K.; Jin, L.; Deng, X.; Jiang, P.; Yu, L. Fine-tuning biexcitons-plasmon coherent states in a single nanocavity. Nanophotonics 2023, 12, 3471–3480. [Google Scholar] [CrossRef]
- Zhou, C.D.; Mou, Z.; Bao, R.; Li, Z.; Teng, S.Y. Compound plasmonic vortex generation based on spiral nanoslits. Front. Phys. 2021, 16, 33503. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Hesselink, L. Solenoidal optical forces from a plasmonic Archimedean spiral. Phys. Rev. A 2019, 100, 013857. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Cohen, A.E. Optical Chirality and Its Interaction with Matter. Phys. Rev. Lett. 2010, 104, 163901. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, C.; Zhang, Y.; Qiu, C.w. Integrated Molar Chiral Sensing Based on High- Q Metasurface. Nano Lett. 2020, 20, 8696–8703. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.L.; Abendroth, J.M.; Poulikakos, L.V.; Hu, J.; Dionne, J.A. Fluorescence-Detected Circular Dichroism of a Chiral Molecular Monolayer with Dielectric Metasurfaces. J. Am. Chem. Soc. 2020, 142, 18304–18309. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Govorov, A.O.; Fan, Z. Theory of Chiral Plasmonic Nanostructures Comprising Metal Nanocrystals and Chiral Molecular Media. ChemPhysChem 2012, 13, 2551–2560. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, W.; Kong, X.; Wu, D.; Chu, J.; Qiu, C.W. Can Weak Chirality Induce Strong Coupling between Resonant States? Phys. Rev. Lett. 2022, 128, 146102. [Google Scholar] [CrossRef]
[eV] | [eV] | [eV] | [eV] | [eV] | [eV] | [eV] |
---|---|---|---|---|---|---|
1.9315 | 1.8398 | 0.121 | 0.091 | 0.050 | 0.04275 | 0.03525 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Liang, K.; Deng, X.; He, C.; Zhou, P.; Li, J.; Qin, J.; Jin, L.; Yu, L. The Mechanism of Manipulating Chirality and Chiral Sensing Based on Chiral Plexcitons in a Strong-Coupling Regime. Nanomaterials 2024, 14, 705. https://doi.org/10.3390/nano14080705
Liang X, Liang K, Deng X, He C, Zhou P, Li J, Qin J, Jin L, Yu L. The Mechanism of Manipulating Chirality and Chiral Sensing Based on Chiral Plexcitons in a Strong-Coupling Regime. Nanomaterials. 2024; 14(8):705. https://doi.org/10.3390/nano14080705
Chicago/Turabian StyleLiang, Xiongyu, Kun Liang, Xuyan Deng, Chengmao He, Peng Zhou, Junqiang Li, Jianyu Qin, Lei Jin, and Li Yu. 2024. "The Mechanism of Manipulating Chirality and Chiral Sensing Based on Chiral Plexcitons in a Strong-Coupling Regime" Nanomaterials 14, no. 8: 705. https://doi.org/10.3390/nano14080705
APA StyleLiang, X., Liang, K., Deng, X., He, C., Zhou, P., Li, J., Qin, J., Jin, L., & Yu, L. (2024). The Mechanism of Manipulating Chirality and Chiral Sensing Based on Chiral Plexcitons in a Strong-Coupling Regime. Nanomaterials, 14(8), 705. https://doi.org/10.3390/nano14080705