On-Chip Broadband, Compact TM Mode Mach–Zehnder Optical Isolator Based on InP-on-Insulator Platforms
Abstract
:1. Introduction
2. Device Structure and Principle
3. Results and Discussion
3.1. NRPS, Loss, and Waveguide Structural Determination
3.2. Isolation, Bandwidth, and Free Spectral Range
3.3. Manufacturing Accuracy and Error
3.4. Manufacturing Processes and Tolerances
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jalas, D.; Petrov, A.; Eich, M.; Freude, W.; Fan, S.; Yu, Z.; Baets, R.; Popović, M.; Melloni, A.; Joannopoulos, J.D.; et al. What is—And what is not—An optical isolator. Nat. Photonics 2013, 7, 579–582. [Google Scholar] [CrossRef]
- Stubkjaer, K.; Small, M. Noise properties of semiconductor lasers due to optical feedback. IEEE J. Quantum Electron. 1984, 20, 472–478. [Google Scholar] [CrossRef]
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
- Klaus, P. External optical feedback phenomena in semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 1995, 1, 480–489. [Google Scholar]
- Yan, W.; Yang, Y.; Yang, W.; Qin, J.; Deng, L.; Bi, L. On-Chip Nonreciprocal Photonic Devices Based on Hybrid Integration of Magneto-Optical Garnet Thin Films on Silicon. IEEE J. Sel. Top. Quantum Electron. 2022, 28, 6100515. [Google Scholar] [CrossRef]
- Shoji, Y.; Mizumoto, T. Waveguide magneto-optical devices for photonics integrated circuits [Invited]. Opt. Mater. Express 2018, 8, 2387. [Google Scholar] [CrossRef]
- Bi, L.; Hu, J.; Jiang, P.; Kim, D.H.; Dionne, G.F.; Kimerling, L.C.; Ross, C.A. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nat. Photonics 2011, 5, 758–762. [Google Scholar] [CrossRef]
- Yan, W.; Yang, Y.; Liu, S.; Zhang, Y.; Xia, S.; Kang, T.; Yang, W.; Qin, J.; Deng, L.; Bi, L. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica 2020, 7, 1555–1562. [Google Scholar] [CrossRef]
- Singh, N.; Kärtner, F.X. Nonlinear Mach-Zehnder interferometer isolator. Opt. Express 2022, 30, 5973–5980. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Y.; Fan, S. Non-reciprocal polarization rotation using dynamic refractive index modulation. Opt. Express 2020, 28, 11974–11982. [Google Scholar] [CrossRef]
- Del Bino, L.; Silver, J.M.; Woodley, M.T.M.; Stebbings, S.L.; Zhao, X.; Del Haye, P. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica 2018, 5, 279. [Google Scholar] [CrossRef]
- Bei, L.; An-Ning, X.; Xin, W.; Cuicui, L.; Keyu, X.; Khoon, T.M.; Yong-Chun, L.; Li, Y.; Chao, L. Collision-Induced Broadband Optical Nonreciprocity. Phys. Rev. Lett. 2020, 125, 123901. [Google Scholar]
- Kittlaus, E.A.; Otterstrom, N.T.; Kharel, P.; Gertler, S.; Rakich, P.T. Non-reciprocal interband Brillouin modulation. Nat. Photonics 2018, 12, 613–619. [Google Scholar] [CrossRef]
- Sohn, D.B.; Kim, S.; Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photonics 2018, 12, 91–97. [Google Scholar] [CrossRef]
- Yokoi, H. Calculation of nonreciprocal phase shift in magneto-optic waveguides with Ce: YIG layer. Opt. Mater 2008, 31, 189–192. [Google Scholar] [CrossRef]
- Engen, P.G.V. Mode degeneracy in magnetic garnet optical waveguides with high Faraday rotation. J. Appl. Phys. 1978, 49, 4660–4662. [Google Scholar] [CrossRef]
- Hepner, G.; Désormière, B. Influence of the quadratic magnetooptical effect on light propagation in garnet films. Appl. Opt. 1974, 13, 2007. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Makimoto, T. Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics. J. Appl. Phys. 1974, 45, 882–888. [Google Scholar] [CrossRef]
- Sekhar, M.C.; Hwang, J.; Ferrera, M.; Linzon, Y.; Razzari, L.; Harnagea, C.; Zaezjev, M.; Pignolet, A.; Morandotti, R. Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films. Appl. Phys. Lett. 2009, 94, 181916. [Google Scholar] [CrossRef]
- Gomi, M.; Satoh, K.; Abe, M. Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering. Jpn. J. Appl. Phys. 1988, 27, L1536–L1538. [Google Scholar] [CrossRef]
- Sun, X.Y.; Du, Q.; Goto, T.; Onbasli, M.C.; Kim, D.H.; Aimon, N.M.; Hu, J.; Ross, C.A. Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation. Acs Photonics 2015, 2, 856–863. [Google Scholar] [CrossRef]
- Liang, J.; Li, Y.; Dai, T.; Zhang, Y.; Zhang, X.; Liu, H.; Wang, P. On-chip Ce:YIG/Si Mach-Zehnder optical isolator with low power consumption. Opt. Express 2023, 31, 8375–8383. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, Y.; Dai, S.; Yu, W.; Li, J.; Zhang, Z.; Liu, J. Design of a Broadband and Low Loss TM Magneto-Optical Waveguide Isolator Based on Lithium Niobate on Insulator. IEEE Photonics J. 2021, 13, 5300111. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Q.; Wang, C.; Fakhrul, T.; Liu, S.; Deng, L.; Huang, D.; Pintus, P.; Bowers, J.; Ross, C.A. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 2019, 6, 473. [Google Scholar] [CrossRef]
- Zhang, C.; Dulal, P.; Stadler, B.J.H.; Hutchings, D.C. Monolithically-Integrated TE-mode 1D Silicon-on-Insulator Isolators using Seedlayer-Free Garnet. Sci. Rep. 2017, 7, 5820. [Google Scholar] [CrossRef] [PubMed]
- Shoji, Y.; Mizumoto, T. Magneto-optical non-reciprocal devices in silicon photonics. Sci. Technol. Adv. Mater. 2014, 15, 14602. [Google Scholar] [CrossRef]
- Matsuo, S.; Fujii, T.; Hasebe, K.; Takeda, K.; Sato, T.; Kakitsuka, T. Directly Modulated DFB Laser on SiO2/Si Substrate for Datacenter Networks. J. Light. Technol. 2015, 33, 1217–1222. [Google Scholar] [CrossRef]
- Nishi, H.; Takeda, K.; Tsuchizawa, T.; Fujii, T.; Matsuo, S.; Yamada, K.; Yamamoto, T. Monolithic Integration of InP Wire and SiOx Waveguides on Si Platform. IEEE Photonics J. 2015, 7, 4900308. [Google Scholar] [CrossRef]
- Roelkens, G.; Liu, L.; Liang, D.; Jones, R.; Fang, A.; Koch, B.; Bowers, J. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev. 2010, 4, 751–779. [Google Scholar] [CrossRef]
- Jones, R.; Doussiere, P.; Driscoll, J.B.; Lin, W.; Yu, H.; Akulova, Y.; Komljenovic, T.; Bowers, J.E. Heterogeneously Integrated InP/Silicon Photonics: Fabricating Fully Functional Transceivers. IEEE Nanotechnol. Mag. 2019, 13, 17–26. [Google Scholar] [CrossRef]
- Smit, M.; Williams, K.; Jos, V.D.T. Past, present, and future of InP-based photonic integration. Apl Photonics 2019, 4, 050901. [Google Scholar] [CrossRef]
- Van, J.J.G.M.; Jiao, Y.; Shen, L.; Millan-Mejia, A.; Pogoretskii, V.; Van Engelen, J.P.; Smit, M.K. Indium Phosphide Integrated Photonics in Membranes. IEEE J. Sel. Top. Quant. Electron. 2018, 24, 6100809. [Google Scholar]
- Ramirez, J.M.; Elfaiki, H.; Verolet, T.; Besancon, C.; Gallet, A.; Néel, D.; Hassan, K.; Olivier, S.; Jany, C.; Malhouitre, S.; et al. III-V-on-Silicon Integration: From Hybrid Devices to Heterogeneous Photonic Integrated Circuits. IEEE J. Sel. Top. Quant. Electron. 2020, 26, 6100213. [Google Scholar] [CrossRef]
- Han, Y.; Yan, Z.; Xue, Y.; Lau, K.M. Micrometer-scale InP selectively grown on SOI for fully integrated Si-photonics. Appl. Phys. Lett. 2020, 117, 52102. [Google Scholar] [CrossRef]
- Komljenovic, T.; Davenport, M.; Hulme, J.; Liu, A.Y.; Santis, C.T.; Spott, A.; Srinivasan, S.; Stanton, E.J.; Zhang, C.; Bowers, J.E. Heterogeneous Silicon Photonic Integrated Circuits. J. Light. Technol. 2016, 34, 20–35. [Google Scholar] [CrossRef]
- Ma, R.; Reniers, S.F.G.; Shoji, Y.; Mizumoto, T.; Jiao, Y.; van der Tol, J.J.G.M.; Williams, K.A. Demonstration of an On-Chip TE-Mode Optical Circulator. IEEE J. Quantum Electron. 2023, 59, 0600707. [Google Scholar] [CrossRef]
- Bahlmann, N.; Chandrasekhara, V.; Erdmann, A.; Gerhardt, R.; Hertel, P.; Lehmann, R.; Salz, D.; Schroteler, F.J.; Wallenhorst, M.; Dotsch, H. Improved design of magnetooptic rib waveguides for optical isolators. J. Light. Technol. 1998, 16, 818–823. [Google Scholar] [CrossRef]
- Shoji, Y.; Mizumoto, T. Silicon Waveguide Optical Isolator with Directly Bonded Magneto-Optical Garnet. Appl. Sci. 2019, 9, 609. [Google Scholar] [CrossRef]
- Fang, A.W.; Park, H.; Kuo, Y.; Jones, R.; Cohen, O.; Liang, D.; Raday, O.; Sysak, M.N.; Paniccia, M.J.; Bowers, J.E. Hybrid silicon evanescent devices. Mater. Today 2007, 10, 28–35. [Google Scholar] [CrossRef]
- Roh, J.W.; Yang, J.S.; Ok, S.H.; Woo, D.H.; Lee, S. Wafer bonding between InP and Ce:YIG(CeY2Fe5O12) using O2 plasma surface activation for an integrated optical waveguide isolator. Integr. Opt. Devices Mater. Technol. X 2006, 6123, 612316. [Google Scholar]
- Van, J.J.G.M.; Jiao, Y.; Van Engelen, J.P.; Pogoretskiy, V.; Kashi, A.A.; Williams, K. InP Membrane on Silicon (IMOS) Photonics. IEEE J. Quantum Electron. 2020, 56, 6300107. [Google Scholar]
- Lee, J.; Yamahara, Y.; Atsumi, Y.; Shindo, T.; Amemiya, T.; Nishiyama, N.; Arai, S. In Compact InP-based 1×2 MMI splitter on Si substrate with BCB wafer bonding for membrane photonic circuits. In Proceedings of the 2012 International Conference on Indium Phosphide and Related Materials, Santa Barbara, CA, USA, 27–30 August 2012; pp. 8–11. [Google Scholar]
- Shoji, Y.; Ito, M.; Shirato, Y.; Mizumoto, T. MZI optical isolator with Si-wire waveguides by surface-activated direct bonding. Opt. Express 2012, 20, 18440–18448. [Google Scholar] [CrossRef]
- Buzaverov, K.A.; Baburin, A.S.; Sergeev, E.V.; Avdeev, S.S.; Lotkov, E.S.; Andronik, M.; Stukalova, V.E.; Baklykov, D.A.; Dyakonov, I.V.; Skryabin, N.N.; et al. Low-loss silicon nitride photonic ICs for near-infrared wavelength bandwidth. Opt. Express 2023, 31, 16227–16242. [Google Scholar] [CrossRef]
- Du, Q.; Wang, C.; Zhang, Y.; Zhang, Y.; Fakhrul, T.; Zhang, W.; Gonçalves, C.; Blanco, C.; Richardson, K.A.; Deng, L.; et al. Monolithic On-chip Magneto-optical Isolator with 3 dB Insertion Loss and 40 dB Isolation Ratio. ACS Photonics 2018, 5, 5010–5016. [Google Scholar] [CrossRef]
Material | Propagation Loss (α) | Direct-Bonded Waveguide | BCB-Bonded Waveguide |
---|---|---|---|
Confinement Factors (Γ) | |||
InP | 4 dB/cm | 45.5754% | 39.5930% |
Ce:YIG | 42 dB/cm | 63.1869% | 30.6780% |
SiO2 | ~0 dB/cm | 15.4238% | 35.9880% |
SGGG | ~0 dB/cm | 1.6389% | 3.3344% |
BCB | ~0 dB/cm | / | 16.5910% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-T.; Liu, L.; Zhao, J.; Zhang, C. On-Chip Broadband, Compact TM Mode Mach–Zehnder Optical Isolator Based on InP-on-Insulator Platforms. Nanomaterials 2024, 14, 709. https://doi.org/10.3390/nano14080709
Chen W-T, Liu L, Zhao J, Zhang C. On-Chip Broadband, Compact TM Mode Mach–Zehnder Optical Isolator Based on InP-on-Insulator Platforms. Nanomaterials. 2024; 14(8):709. https://doi.org/10.3390/nano14080709
Chicago/Turabian StyleChen, Wan-Ting, Li Liu, Jia Zhao, and Chen Zhang. 2024. "On-Chip Broadband, Compact TM Mode Mach–Zehnder Optical Isolator Based on InP-on-Insulator Platforms" Nanomaterials 14, no. 8: 709. https://doi.org/10.3390/nano14080709
APA StyleChen, W. -T., Liu, L., Zhao, J., & Zhang, C. (2024). On-Chip Broadband, Compact TM Mode Mach–Zehnder Optical Isolator Based on InP-on-Insulator Platforms. Nanomaterials, 14(8), 709. https://doi.org/10.3390/nano14080709