Self-Powered UV Photodetector Construction of the P(EDOS-TTh) Copolymer-Modified ZnO Nanoarray
Abstract
:1. Introduction
2. Experimental Methods
2.1. Experimental Reagents
2.2. Materials Structure and Photoelectric Measurement
2.3. Preparation of ZnO NRs and P(EDOS-TTh)
2.4. Preparation of the ZnO/P(EDOS-TTh) Heterojunction UV Photodetector
3. Results and Discussion
3.1. Structural Characterization of the As-Prepared Materials
3.2. Morphology Analysis of the Copolymer
3.3. Performance Analysis of the ZnO/P(EDOS-TTh) Device
3.4. Mechanism Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perez-Tomas, A.; Chikoidze, E.; Dumont, Y.; Jennings, M.R.; Russell, S.O.; Vales-Castro, P.; Catalan, G.; Lira-Cantu, M.; Ton–That, C.; Teherani, F.H.; et al. Giant bulk photovoltaic effect in solar cell architectures with ultra-wide bandgap Ga2O3 transparent conducting electrodes. Mater. Today Energy 2019, 14, 100350. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Tang, X.; Wang, W.; Li, G. A Self-powered High-performance UV Photodetector Based on Core-Shell GaN/MoO3-x Nanorod Array Heterojunction. Adv. Opt. Mater. 2020, 8, 2000197. [Google Scholar] [CrossRef]
- Fattah, M.F.A.; Khan, A.A.; Anabestani, H.; Rana, M.M.; Rassel, S.; Therrien, J.; Ban, D. Sensing of ultraviolet light: A transition from conventional to self-powered photodetector. Nanoscale 2021, 13, 15526–15551. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhu, L.; He, H.; Guo, Y.; Pan, G.; Jiang, J.; Jin, Y.; Sun, L.; Ye, Z. Colloidal Chemically Fabricated ZnO: Cu-based Photodetector with Extended UV-visible Detection Waveband. Nanoscale 2013, 5, 9577–9581. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, J.; Xin, Q.; Yi, L.; Guo, Z.; Wang, Y.; Song, A. Self-powered UV photodetectors and imaging arrays based on NiO/IGZO heterojunctions fabricated at room temperature. Opt. Express 2022, 30, 27453–27461. [Google Scholar] [CrossRef] [PubMed]
- Briseno, A.L.; Holcombe, T.W.; Boukai, A.I.; Garnett, E.C.; Shelton, S.W.; Fréchet, J.J.M.; Yang, P. Oligo- and Polythiophene/ZnO Hybrid Nanowire Solar Cells. Nano Lett. 2010, 10, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Chandiran, A.K.; Abdi-Jalebi, M.; Nazeeruddin, M.K.; Gratzel, M. Analysis of Electron Transfer Properties of ZnO and TiO2 Photoanodes for Dye-Sensitized Solar Cells. ACS Nano 2014, 8, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Bera, A.; Peng, H.Y.; Lourembam, J.; Shen, Y.D.; Sun, X.W.; Wu, T. A Versatile Light-Switchable Nanorod Memory: Wurtzite ZnO on Perovskite SrTiO3. Adv. Funct. Mater. 2013, 23, 4977–4984. [Google Scholar] [CrossRef]
- Liu, X.Y.; Shan, C.X.; Jiao, C.; Wang, S.P.; Zhao, H.F.; Shen, D.Z. Pure Ultraviolet Emission from ZnO Nanowire-Based p-n Heterostructures. Opt. Lett. 2014, 39, 422–425. [Google Scholar] [CrossRef]
- Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S.A.; Aplin, D.P.; Park, J.; Bao, X.Y.; Lo, Y.H.; Wang, D. ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Lett. 2007, 7, 1003–1009. [Google Scholar] [CrossRef]
- Das, S.N.; Moon, K.J.; Kar, J.P.; Choi, J.H.; Xiong, J.; Lee, T.I.; Myoung, J.M. ZnO Single Nanowire-Based UV Detectors. Appl. Phys. Lett. 2010, 97, 022103. [Google Scholar] [CrossRef]
- Jin, Y.Z.; Wang, J.P.; Sun, B.Q.; Blakesley, J.C.; Greenham, N.C. Solution-Processed Ultraviolet Photodetedtors Based on Colloidal ZnO Nanoparticles. Nano Lett. 2008, 8, 1649–1653. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, T.; Basak, D. Highly Efficient Ultraviolet Photodetection in Nanocolumnar RF Sputtered ZnO Films: A Comparison between Sputtered, Sol-Gel and Aqueous Chemically Grown Nanostructures. Nanotechnology 2010, 21, 375202. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Huang, J.; Meng, J.P.; Li, Z. Enhanced performance of a self-powered ZnO photodetector by coupling LSPR-inspired pyro-pho totronic effect and piezo-phototronic effect. Adv. Opt. Mater. 2022, 10, 2102468. [Google Scholar] [CrossRef]
- Chen, J.; Xu, B.; Ma, H.; Qi, R.; Bai, W.; Yue, F.; Yang, P.; Chen, Y.; Chu, J.; Sun, L. Element Diffusion Induced Carrier Transport Enhancement in High-Performance CZTSSe Self-Powered Photodetector. Small 2024, 2307347–2307357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sa, X.; Li, S.; Zhai, J. All-Solution-Processed InGaO/PbI2 Heterojunction for Self-Powered Omnidirectional Near-Ultraviolet Photodetection and Imaging. Adv. Opt. Mater. 2024, 2302665–2302672. [Google Scholar] [CrossRef]
- Rana, A.K.; Kumar, M.; Ban, D.K.; Wong, C.P.; Yi, J.; Kim, J. Enhancement in performance of transparent p-NiO/n-ZnO heterojunction ultrafast self-powered photodetector via pyro-phototronic effect. Adv. Electron. Mater. 2019, 5, 1900438. [Google Scholar] [CrossRef]
- Jiang, W.; Zheng, T.; Wu, B.; Jiao, H.; Wang, X.; Chen, Y.; Zhang, X.; Peng, M.; Wang, H.; Lin, T.; et al. A versatile photodetector assisted by photovoltaic and bolometric effects. Light. Sci. Appl. 2020, 9, 160. [Google Scholar] [CrossRef]
- Hu, L.; Qiao, W.; Han, J.; Zhou, X.; Wang, C.; Ma, D.; Wang, Z.Y.; Li, Y. Naphthalene diimide-diketopyrrolopyrrole copolymers as non-fullerene acceptors for use in bulk-heterojunction all-polymer UV-NIR photodetectors. Polym. Chem. 2017, 8, 528–536. [Google Scholar] [CrossRef]
- Tong, S.; Yuan, J.; Zhang, C.; Wang, C.; Liu, B.; Shen, J.; Xia, H.; Zou, Y.; Xie, H.; Sun, J.; et al. Large-scale roll-to-roll printed, flexible and stable organic bulk heterojunction photodetector. npj Flex. Electron. 2018, 2, 7. [Google Scholar] [CrossRef]
- Li, S.; Deng, X.; Feng, L.; Miao, X.; Tang, K.; Li, Q.; Li, Z. Copolymers of carbazole and phenazine derivatives: Minor structural modification, but totally different photodetector performance. Polym. Chem. 2016, 8, 1039–1048. [Google Scholar] [CrossRef]
- Pickett, A.; Mohapatra, A.; Laudari, A.; Khanra, S.; Ram, T.; Patil, S.; Guha, S. Hybrid ZnO-organic semiconductor interfaces in photodetectors: A comparison of two near-infrared donor-acceptor copolymers. Org. Electron. 2017, 45, 115–123. [Google Scholar] [CrossRef]
- Dai, Y.; Li, W.; Zhao, R.; Huang, Q.; Xu, N.; Yuan, F.; Zhang, C. Quadruple thiophene based electrochromic electrodeposited film as high performance hybrid energy storage system. Electrochim. Acta 2019, 318, 322–332. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Jeong, H.; You, J.M.; Jeon, S. Synthesis and characterization of an electrochromic copolymer based on 2,2′:5′,2″-terthiophene and 3,4-ethylenedioxythiophene. Appl. Nanosci. 2012, 2, 133–141. [Google Scholar] [CrossRef]
- Kadir, A.; Jamal, R.; Abdiryim, T.; Sawut, N.; Che, Y.; Helil, Z.; Zhang, H. Electrochemical sensor formed from poly(3,4-ethylenedioxyselenophene) and nitrogen-doped graphene composite for dopamine detection. RSC Adv. 2021, 11, 37544–37551. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, Z.; Xiong, X.; Hu, X.; Wang, X.; Li, N.; Jin, T.; Chen, Y. ZnO/ZnSe heterojunction nanocomposites with oxygen vacancies for acetone sensing. J. Alloys Compd. 2022, 906, 164316. [Google Scholar] [CrossRef]
- Feng, W.; Wan, A.S.; Garfunkel, E. Interfacial Bonding and Morphological Control of Electropolymerized Polythiophene Films on ZnO. J. Phys. Chem. C 2013, 117, 9852–9863. [Google Scholar] [CrossRef]
- Mojtabavi, E.A.; Nasirian, S. Flexible self-powered ultraviolet-visible photodetector based on polyaniline- titanium dioxide heterostructures: The study of the rearrangement of layers. Appl. Surf. Sci. 2019, 492, 189–198. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, T.; Liu, H.; Jia, R.; Niu, D.; Chen, B.; Shi, Y.; Yin, L.; Lu, B. Laminated pyroelectric generator with spin coated transparent poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrodes for a flexible self-powered stimulator. RSC Adv. 2018, 8, 15134–15140. [Google Scholar] [CrossRef]
- Fan, Z.; Ouyang, J. Thermoelectric Properties of PEDOT:PSS. Adv. Electron. Mater. 2019, 5, 1800769. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Wang, Y.; Wang, Z. Frequency response characteristics of pyroelectric effect in p-n junction UV detectors. Nano Energy 2018, 54, 429–436. [Google Scholar] [CrossRef]
- Serrano-Claumarchirant, J.F.; Culebras, M.; Muñoz-Espí, R.; Cantarero, A.; Gómez, C.M.; Collins, M.N. PEDOT Thin Films with n-Type Thermopower. ACS Appl. Energy Mater. 2019, 3, 861–867. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.J.; Ko, Y.J.; Baek, J.Y.; Shin, G.; Jeon, J.G.; Lee, J.H.; Kim, J.H.; Jung, J.H.; Kang, T.J. Enhanced pyroelectric conversion of thermal radiation energy: Energy harvesting and non-contact proximity sensor. Nano Energy 2022, 97, 107178. [Google Scholar] [CrossRef]
- Luo, G.; Yang, X.; Long, Y.; Li, W.; Yang, Y.; Luo, S. Enhanced performance of self-powered ultraviolet photodetectors coupled with the photovoltaic-pyroelectric effect based on ZnO/CuBO2 core-shell nanorod arrays. J. Alloys Compd. 2022, 911, 165066–165079. [Google Scholar] [CrossRef]
- Ding, M.; Zhao, D.; Yao, B.; Li, Z.; Xu, X. Ultraviolet photodetector based on heterojunction of n-ZnO microwire/p-GaN film. RSC Adv. 2015, 5, 908–912. [Google Scholar] [CrossRef]
- Chen, Y.; Su, L.; Jiang, M.; Fang, X. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection. J. Mater. Sci. Technol. 2022, 105, 259–265. [Google Scholar] [CrossRef]
- Thomas, A.M.; Yoon, C.; Ippili, S.; Jella, V.; Yang, T.Y.; Yoon, G.; Yoon, S.G. High-Performance Flexible Ultraviolet Photodetectors Based on Facilely Synthesized Ecofriendly ZnAl:LDH Nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 61434–61446. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Song, W.; Gao, F.; Wang, X.; Luo, X.; Guo, J.; Zhang, B.; Shi, J.; Cheng, C.; Liu, Q.; et al. In Situ Conformal Coating of Polyaniline on GaN Microwires for Ultrafast, Self-Driven Heterojunction Ultraviolet Photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 13473–13480. [Google Scholar] [CrossRef]
- Dong, Y.; Zou, Y.; Song, J.; Zhu, Z.; Li, J.; Zeng, H. Self-powered fiber-shaped wearable omnidirectional photodetectors. Nano Energy 2016, 30, 173–179. [Google Scholar] [CrossRef]
- Yan, T.; Cai, S.; Hu, Z.; Li, Z.; Fang, X. Ultrafast Speed, Dark Current Suppression, and Self-Powered Enhancement in TiO2-Based Ultraviolet Photodetectors by Organic Layers and Ag Nanowires Regulation. J. Phys. Chem. Lett. 2021, 12, 9912–9918. [Google Scholar] [CrossRef]
- Chen, F.; Deng, C.; Wang, X.; Liu, C.; Liu, Q.; Zou, C.; Wu, G.; Zhao, Z.; Chen, K.; Gao, F.; et al. Enhanced Photoresponse Performance of Self-Powered PTAA/GaN Microwire Heterojunction Ultraviolet Photodetector Based on Piezo-Phototronic Effect. Adv. Mater. Interfaces 2022, 9, 2102286. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, H.; Jamal, R.; Abdurexit, A.; Serkjan, N.; Xie, S.; Liu, Y.; Abdiryim, T. High performance self-powered ultraviolet photodetectors based on P(TTh-co-EDOT) copolymer sensitized TiO2 NRs. Surf. Interfaces 2024, 44, 103802. [Google Scholar] [CrossRef]
Device | Wavelength (nm) | Iph/Idark (mA) | R (mA/W) | D* (Jone) | τr/τf (s) |
---|---|---|---|---|---|
ZnO/P(EDOS-TTh)-1 cycle | 365 | 0.012/0.001 | 0.154 | 4.2 × 109 | 0.098/2.03 |
ZnO/P(EDOS-TTh)-2 cycles | 365 | 0.08/0.002 | 1.01 | 1.96 × 1010 | 0.090/1.32 |
ZnO/P(EDOS-TTh)-3 cycles | 365 | 0.238/−0.005 | 3.31 | 7.25 × 1010 | 0.086/0.85 |
ZnO/P(EDOS-TTh)-4 cycles | 365 | 0.207/0.001 | 2.60 | 6.01 × 1010 | 0.26 s/1.11 |
ZnO/P(EDOS-TTh)-5 cycles | 365 | 0.127/0.01 | 1.52 | 1.28 × 1010 | 0.47 s/4.26 |
Device | Wavelength (nm) | R (mA/W) | τr/τf (s) | D* (Jones) | Refs. |
---|---|---|---|---|---|
ZnO/PANI | 355 | 0.56 | 0.11/1.45 m | - | [36] |
ZnAl:LDH-PDMS | 355 | 148 | - | (2.5 ± 0.2) × 1012 | [37] |
GaN/PANI | 361 | 69 | 1.1/1.8 m | 8.45 × 1013 | [38] |
ZnO/PVK | 350 | 9.96 | 1.5/6 | - | [39] |
TiO2/PC71BM/PEDOT:PSS | 350 | 33 | 60/1 μ | 1.6 × 1011 | [40] |
PTAA(55 nm)/GaN | 325 | 268 | 14/23 | 2.155 × 109 | [41] |
TiO2 NRs/P(TTh-co-EDOT) | 365 | 2.52 | 0.256/0.427 | 3.413 × 1010 | [42] |
ZnO NRs/P(EDOS-TTh) | 365 | 3.31 | 0.086/0.85 | 7.25 × 1010 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadir, A.; Abdiryim, T.; Liu, X.; Jamal, R.; Zhang, Y. Self-Powered UV Photodetector Construction of the P(EDOS-TTh) Copolymer-Modified ZnO Nanoarray. Nanomaterials 2024, 14, 720. https://doi.org/10.3390/nano14080720
Kadir A, Abdiryim T, Liu X, Jamal R, Zhang Y. Self-Powered UV Photodetector Construction of the P(EDOS-TTh) Copolymer-Modified ZnO Nanoarray. Nanomaterials. 2024; 14(8):720. https://doi.org/10.3390/nano14080720
Chicago/Turabian StyleKadir, Aygul, Tursun Abdiryim, Xiong Liu, Ruxangul Jamal, and Yaolong Zhang. 2024. "Self-Powered UV Photodetector Construction of the P(EDOS-TTh) Copolymer-Modified ZnO Nanoarray" Nanomaterials 14, no. 8: 720. https://doi.org/10.3390/nano14080720
APA StyleKadir, A., Abdiryim, T., Liu, X., Jamal, R., & Zhang, Y. (2024). Self-Powered UV Photodetector Construction of the P(EDOS-TTh) Copolymer-Modified ZnO Nanoarray. Nanomaterials, 14(8), 720. https://doi.org/10.3390/nano14080720