Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Measurement and Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mao, J.; Liu, Z.H.; Zhou, J.W.; Zhu, H.T.; Zhang, Q.; Chen, G.; Ren, Z.F. Advances in thermoelectrics. Adv. Phys. 2018, 67, 69–147. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Z.G.; Dargusch, M.S.; Zou, J. High Performance Thermoelectric Materials: Progress and Their Applications. Adv. Energy Mater. 2017, 8, 1701797–1701824. [Google Scholar] [CrossRef]
- Zhang, X.; Bu, Z.; Lin, S.; Chen, Z.; Li, W.; Pei, Y. GeTe Thermoelectrics. Joule 2020, 4, 986–1003. [Google Scholar] [CrossRef]
- Liu, Z.H.; Gao, W.H.; Zhang, W.H.; Sato, N.; Guo, Q.S.; Mori, T. High Power Factor and Enhanced Thermoelectric Performance in Sc and Bi Codoped GeTe: Insights into the Hidden Role of Rhombohedral Distortion Degree. Adv. Energy Mater. 2020, 10, 202002588–202002597. [Google Scholar] [CrossRef]
- Hong, M.; Lyv, W.Y.; Li, M.; Xu, S.D.; Sun, Q.; Zou, J.; Chen, Z.G. Rashba Effect Maximizes Thermoelectric Performance of GeTe Derivatives. Joule 2020, 4, 2030–2043. [Google Scholar] [CrossRef]
- Srinivasan, B.; Le Tonquesse, S.; Gellé, A.; Bourgès, C.; Monier, L.; Ohkubo, I.; Halet, J.F.; Berthebaud, D.; Mori, T. Screening of transition (Y, Zr, Hf, V, Nb, Mo, and Ru) and rare-earth (La and Pr) elements as potential effective dopants for thermoelectric GeTe—An experimental and theoretical appraisal. J. Mater. Chem. A 2020, 8, 19805–19821. [Google Scholar] [CrossRef]
- Kihoi, S.K.; Shenoy, U.S.; Kahiu, J.N.; Kim, H.; Bhat, D.K.; Lee, H.S. Ultralow Lattice Thermal Conductivity and Enhanced Mechanical Properties of Cu and Sb Co-Doped SnTe Thermoelectric Material with a Complex Microstructure Evolution. ACS Sustain. Chem. Eng. 2022, 10, 1367–1372. [Google Scholar] [CrossRef]
- Huo, H.; Wang, Y.; Xi, L.; Yang, J.; Zhang, W. The variation of intrinsic defects in XTe (X = Ge, Sn, and Pb) induced by the energy positions of valence band maxima. J. Mater. Chem. C 2021, 9, 5765–5770. [Google Scholar] [CrossRef]
- Lei, K.; Huang, H.M.; Liu, X.J.; Wang, W.L.; Guo, K.; Zheng, R.K.; Li, H. Ultra-Low Lattice Thermal Conductivity Enables High Thermoelectric Properties in Cu and Y Codoped SnTe via Multi-Scale Composite Nanostructures. ACS Sustain. Chem. Eng. 2023, 11, 7541–7551. [Google Scholar] [CrossRef]
- Ge, B.Z.; Lee, H.; Im, J.; Choi, Y.; Kim, S.Y.; Lee, J.Y.; Cho, S.P.; Sung, Y.E.; Choi, K.Y.; Zhou, C.J.; et al. Engineering an atomic-level crystal lattice and electronic band structure for an extraordinarily high average thermoelectric figure of merit in n-type PbSe. Energy Environ. Sci. 2023, 16, 3994–4008. [Google Scholar] [CrossRef]
- Biswas, K.; He, J.; Zhang, Q.; Wang, G.; Uher, C.; Dravid, V.P.; Kanatzidis, M.G. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 2011, 3, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Sun, J.; Mao, J.; Zhu, H.; Ren, W.; Zhou, J.; Wang, Z.; Singh, D.J.; Sui, J.; Chu, C.W.; et al. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Proc. Natl. Acad. Sci. USA 2018, 115, 5332–5337. [Google Scholar] [CrossRef] [PubMed]
- Cahill, D.G.; Watson, S.K.; Pohl, R.O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B Condens. Matter 1992, 46, 6131–6140. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, X.; Chen, Z.; Lin, S.; Li, W.; Shen, J.; Witting, I.T.; Faghaninia, A.; Chen, Y.; Jain, A.; et al. Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule 2018, 2, 976–987. [Google Scholar] [CrossRef]
- Lei, K.; Feng, K.m.; Ma, C.; Cai, Z.T.; He, B.b.; Li, H. High power factor and ultra-low lattice thermal conductivity in Sn1−xWxTe alloys via interstitial defects modulation. J. Alloys Compd. 2024, 976, 173187. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, J.; Sun, Z. First principles investigation on anomalous lattice shrinkage of W alloyed rock salt GeTe. J. Phys. Chem. Solids 2020, 137, 109220. [Google Scholar] [CrossRef]
- Zheng, L.; Li, W.; Lin, S.; Li, J.; Chen, Z.; Pei, Y. Interstitial Defects Improving Thermoelectric SnTe in Addition to Band Convergence. ACS Energy Lett. 2017, 2, 563–568. [Google Scholar] [CrossRef]
- Yin, L.C.; Liu, W.D.; Li, M.; Wang, D.Z.; Wu, H.; Wang, Y.F.; Zhang, L.X.; Shi, X.L.; Liu, Q.F.; Chen, Z.G. Interstitial Cu: An Effective Strategy for High Carrier Mobility and High Thermoelectric Performance in GeTe. Adv. Funct. Mater. 2023, 33, 2301750–2301758. [Google Scholar] [CrossRef]
- Xin, J.; Li, S.; Yang, J.; Basit, A.; Long, Q.; Li, S.; Jiang, Q.; Xu, T.; Xiao, B. Tactfully decoupling interdependent electrical parameters via interstitial defects for SnTe thermoelectrics. Nano Energy 2020, 67, 104292. [Google Scholar] [CrossRef]
- Foster, A.S.; Lopez Gejo, F.; Shluger, A.L.; Nieminen, R.M. Vacancy and interstitial defects in hafnia. Phys. Rev. B 2002, 65, 174117. [Google Scholar] [CrossRef]
- Li, H.; Jing, H.; Han, Y.; Lu, G.-Q.; Xu, L.; Liu, T. Interfacial evolution behavior of AgSbTe2.01/nanosilver/Cu thermoelectric joints. Mater. Des. 2016, 89, 604–610. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Lin, S.; Chen, Z.; Pei, Y. Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying. Chem. Mater. 2016, 29, 605–611. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Li, J.; Bu, Z.; Meng, X.; Ang, R.; Li, W. Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe. ACS Appl. Mater. Interfaces 2019, 11, 30756–30762. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Wang, D.; Wang, S.; Qin, B.; Wang, Y.; Qin, Y.; Jin, Y.; Chang, C.; Zhao, L.D. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 2022, 375, 1385–1389. [Google Scholar] [CrossRef] [PubMed]
- Li, M.R.; Ying, P.Z.; Du, Z.L.; Liu, X.L.; Li, X.; Fang, T.; Cui, J.L. Improved Thermoelectric Performance of P-type SnTe through Synergistic Engineering of Electronic and Phonon Transports. ACS Appl. Mater. Interfaces 2022, 14, 8171–8178. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Zhu, C.; Song, Q.; Huang, H.; Xiao, J.; Ren, D.; Shi, M.; Qiu, P.; Shi, X.; Xu, F.; et al. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe. Adv. Mater. 2021, 33, e2008773. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, X.; Mu, E.; Liu, Y.; Che, Z.; Dun, C.; Sun, F.; Wang, X.; Zhang, Y.; Hu, Z. Lattice Strain Enhances Thermoelectric Properties in Sb2Te3/Te Heterostructure. Adv. Electron. Mater. 2019, 6, 1900735. [Google Scholar] [CrossRef]
- Wu, G.J.; Guo, Z.; Wang, R.Y.; Tan, X.J.; Cui, C.; Sun, P.; Hu, H.Y.; Wu, J.H.; Liu, G.Q.; Jiang, J. Structural modulation and resonant level enable high thermoelectric performance of GeTe in the mid-to-low temperature range. J. Mater. Chem. A 2023, 11, 20497–20505. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, D.Y.; Qiu, Y.T.; Zhao, L.D. Boosting the thermoelectric performance of GeTe by manipulating the phase transition temperature Sb doping. J. Mater. Chem. C 2021, 9, 6484–6490. [Google Scholar] [CrossRef]
- Pei, Q.-X.; Guo, J.-Y.; Suwardi, A.; Zhang, G. Insights into interfacial thermal conductance in Bi2Te3-based systems for thermoelectrics. Mater. Today Phys. 2023, 30, 100953. [Google Scholar] [CrossRef]
- Perumal, S.; Samanta, M.; Ghosh, T.; Shenoy, U.S.; Bohra, A.K.; Bhattacharya, S.; Singh, A.; Waghmare, U.V.; Biswas, K. Realization of High Thermoelectric Figure of Merit in GeTe by Complementary Co-doping of Bi and In. Joule 2019, 3, 2565–2580. [Google Scholar] [CrossRef]
- Hong, M.; Zou, J.; Chen, Z.G. Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance. Adv. Mater. 2019, 31, e1807071. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.H.; Liu, Z.H.; Zhang, W.H.; Sato, N.; Guo, Q.S.; Mori, T. Improved thermoelectric performance of GeTe via efficient yttrium doping. Appl. Phys. Lett. 2021, 118, 033901. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, D.; Zhu, Y.; Su, L.; Hong, T.; Wang, Z.; Ge, Z.-H.; Qiu, Y.; Zhao, L.-D. Contrasting roles of trivalent dopants M (M = In, Sb, Bi) in enhancing the thermoelectric performance of Ge0.94M0.06Te. Acta Mater. 2023, 252, 118926. [Google Scholar] [CrossRef]
- Li, J.; Li, W.; Bu, Z.; Wang, X.; Gao, B.; Xiong, F.; Chen, Y.; Pei, Y. Thermoelectric Transport Properties of CdxBiyGe1−x−yTe Alloys. ACS Appl. Mater. Interfaces 2018, 10, 39904–39911. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Gautier, R.; Gucci, F.; Fontaine, B.; Halet, J.-F.; Cheviré, F.; Boussard-Pledel, C.; Reece, M.J.; Bureau, B. Impact of Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions. J. Phys. Chem. C 2017, 122, 227–235. [Google Scholar] [CrossRef]
- Xu, L.; Wu, G.; Wang, R.; Yan, Z.; Cai, J.; Yang, J.; Wang, X.; Luo, J.; Tan, X.; Liu, G.; et al. Synergistically Optimized Thermal Conductivity and Carrier Concentration in GeTe by Bi-Se Codoping. ACS Appl. Mater. Interfaces 2022, 14, 14359–14366. [Google Scholar] [CrossRef] [PubMed]
- Shuai, J.; Tan, X.J.; Guo, Q.; Xu, J.T.; Gellé, A.; Gautier, R.; Halet, J.F.; Failamani, F.; Jiang, J.; Mori, T. Enhanced thermoelectric performance through crystal field engineering in transition metal–doped GeTe. Mater. Today Phys. 2019, 9, 100094. [Google Scholar] [CrossRef]
- Rinaldi, C.; Rojas-Sánchez, J.C.; Wang, R.N.; Fu, Y.; Oyarzun, S.; Vila, L.; Bertoli, S.; Asa, M.; Baldrati, L.; Cantoni, M.; et al. Evidence for spin to charge conversion in GeTe(111). APL Mater. 2016, 4, 032501. [Google Scholar] [CrossRef]
- Zheng, Z.; Su, X.; Deng, R.; Stoumpos, C.; Xie, H.; Liu, W.; Yan, Y.; Hao, S.; Uher, C.; Wolverton, C.; et al. Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. J. Am. Chem. Soc. 2018, 140, 2673–2686. [Google Scholar] [CrossRef] [PubMed]
- Banik, A.; Vishal, B.; Perumal, S.; Datta, R.; Biswas, K. The origin of low thermal conductivity in Sn1−xSbxTe: Phonon scattering via layered intergrowth nanostructures. Energy Environ. Sci. 2016, 9, 2011–2019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Zheng, K.; Ma, C.; Fang, Y.; Ma, Y.; Deng, Q.; Li, H. Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe. Nanomaterials 2024, 14, 722. https://doi.org/10.3390/nano14080722
Cai Z, Zheng K, Ma C, Fang Y, Ma Y, Deng Q, Li H. Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe. Nanomaterials. 2024; 14(8):722. https://doi.org/10.3390/nano14080722
Chicago/Turabian StyleCai, Zhengtang, Kaipeng Zheng, Chun Ma, Yu Fang, Yuyang Ma, Qinglin Deng, and Han Li. 2024. "Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe" Nanomaterials 14, no. 8: 722. https://doi.org/10.3390/nano14080722
APA StyleCai, Z., Zheng, K., Ma, C., Fang, Y., Ma, Y., Deng, Q., & Li, H. (2024). Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe. Nanomaterials, 14(8), 722. https://doi.org/10.3390/nano14080722