Evolution of the Electronic Properties of Tellurium Crystals with Plasma Irradiation Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Tellurium Flakes
2.2. Preparation of Tellurium Devices to Be Tested
2.3. Plasma Treatment of Tellurium Flakes
3. Results and Discussion
3.1. Crystal Morphology and Band Gap Characterization for the Pristine Tellurium Flakes
3.2. Study of the Evolution in the Structure and Electronic Properties of Tellurium Crystal Flakes under Plasma Treatment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sattar, T. Current Review on Synthesis, Composites and Multifunctional Properties of Graphene. Top. Curr. Chem. 2019, 377, 45. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Alfrey, A.; Hu, J.Q.; Lydick, N.; Paik, E.; Liu, B.; Sun, H.P.; Lu, Y.; Wang, R.Y.; Forrest, S.; et al. Macroscopic transition metal dichalcogenides monolayers with uniformly high optical quality. Nat. Commun. 2023, 14, 6241. [Google Scholar] [CrossRef]
- Bonera, E.; Molle, A. Emerging Two-Dimensional Materials: Inspiring Nanotechnologies for Smart Energy Management. Nanomaterials 2023, 13, 2. [Google Scholar] [CrossRef]
- Molas, M.R. Excitons and Phonons in Two-Dimensional Materials: From Fundamental to Applications. Nanomaterials 2023, 13, 3. [Google Scholar] [CrossRef]
- Cao, R.; Fan, S.D.; Yin, P.; Ma, C.Y.; Zeng, Y.H.; Wang, H.D.; Khan, K.; Wageh, S.; Al-Ghamd, A.A.; Tareen, A.K.; et al. Mid-Infrared Optoelectronic Devices Based on Two-Dimensional Materials beyond Graphene: Status and Trends. Nanomaterials 2022, 12, 53. [Google Scholar] [CrossRef]
- Zhou, C.J.; Wang, X.S.; Raju, S.; Lin, Z.Y.; Villaroman, D.; Huang, B.L.; Chan, H.L.W.; Chan, M.S.; Chai, Y. Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT. Nanoscale 2015, 7, 8695–8700. [Google Scholar] [CrossRef]
- Yan, Z.H.; Yang, H.; Yang, Z.; Ji, C.G.; Zhang, G.Y.; Tu, Y.S.; Du, G.Y.; Cai, S.H.; Lin, S.H. Emerging Two-Dimensional Tellurene and Tellurides for Broadband Photodetectors. Small 2022, 18, 27. [Google Scholar] [CrossRef]
- Wu, W.Z.; Qiu, G.; Wang, Y.X.; Wang, R.X.; Ye, P.D. Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 2018, 47, 7203–7212. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Qiu, G.; Wang, R.X.; Huang, S.Y.; Wang, Q.X.; Liu, Y.Y.; Du, Y.C.; Goddard, W.A.; Kim, M.J.; Xu, X.F.; et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236. [Google Scholar] [CrossRef]
- Lozovoy, K.A.; Izhnin, I.I.; Kokhanenko, A.P.; Dirko, V.V.; Vinarskiy, V.P.; Voitsekhovskii, A.V.; Fitsych, O.I.; Akimenko, N.Y. Single-Element 2D Materials beyond Graphene: Methods of Epitaxial Synthesis. Nanomaterials 2022, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Cai, C.; Niu, C.; Wang, C.; Sun, Q.; Han, X.; Guo, Z.; Jia, Y. Tellurene-a monolayer of tellurium from first-principles prediction. arXiv 2016, arXiv:1605.03253. [Google Scholar]
- Zhang, X.; Jiang, J.Z.; Suleiman, A.A.; Jin, B.; Hu, X.Z.; Zhou, X.; Zhai, T.Y. Hydrogen-Assisted Growth of Ultrathin Te Flakes with Giant Gate-Dependent Photoresponse. Adv. Funct. Mater. 2019, 29, 9. [Google Scholar] [CrossRef]
- Wang, C.; Xu, C.; Guo, X.Y.; Zhang, N.; Yan, J.M.; Chen, J.W.; Yu, W.; Qin, J.K.; Zhu, Y.; Li, L.J.; et al. Alloy-buffer-controlled van der Waals epitaxial growth of aligned tellurene. Nano Res. 2022, 15, 5712–5718. [Google Scholar] [CrossRef]
- Yan, J.H.; Zhang, X.Y.; Pan, Y.Y.; Li, J.Z.; Shi, B.W.; Liu, S.Q.; Yang, J.; Song, Z.G.; Zhang, H.; Ye, M.; et al. Monolayer tellurene-metal contacts. J. Mater. Chem. C 2018, 6, 6153–6163. [Google Scholar] [CrossRef]
- Shi, Z.; Cao, R.; Khan, K.; Tareen, A.K.; Liu, X.S.; Liang, W.Y.; Zhang, Y.; Ma, C.Y.; Guo, Z.N.; Luo, X.L.; et al. Two-Dimensional Tellurium: Progress, Challenges, and Prospects. Nano-Micro Lett. 2020, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- Amani, M.; Tan, C.L.; Zhang, G.; Zhao, C.S.; Bullock, J.; Song, X.H.; Kim, H.; Shrestha, V.R.; Gao, Y.; Crozier, K.B.; et al. Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors. ACS Nano 2018, 12, 7253–7263. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.J.; Xing, C.Y.; Huang, W.C.; Fan, T.J.; Li, Z.J.; Zhao, J.L.; Xiang, Y.J.; Guo, Z.N.; Li, J.Q.; Yang, Z.G.; et al. Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Adv. Funct. Mater. 2018, 28, 11. [Google Scholar] [CrossRef]
- Deckoff-Jones, S.; Wang, Y.X.; Lin, H.T.; Wu, W.Z.; Hu, J.J. Tellurene: A Multifunctional Material for Midinfrared Optoelectronics. ACS Photonics 2019, 6, 1632–1638. [Google Scholar] [CrossRef]
- Lee, T.I.; Lee, S.; Lee, E.; Sohn, S.; Lee, Y.; Lee, S.; Moon, G.; Kim, D.; Kim, Y.S.; Myoung, J.M.; et al. High-Power Density Piezoelectric Energy Harvesting Using Radially Strained Ultrathin Trigonal Tellurium Nanowire Assembly. Adv. Mater. 2013, 25, 2920–2925. [Google Scholar] [CrossRef]
- Wang, Y.X.; Wang, R.X.; Wan, S.H.; Wang, Q.X.; Kim, M.J.; Ding, D.; Wu, W.Z. Scalable nanomanufacturing and assembly of chiral-chain piezoelectric tellurium nanowires for wearable self-powered cardiovascular monitoring. Nano Futures 2019, 3, 9. [Google Scholar] [CrossRef]
- Yang, D.D.; Qiu, W.; Chen, X.J.; Liu, L.; Lai, Y.J.; Meng, Z.H.; Song, J.P.; Liu, Y.F.; Liu, X.Y.; Zhan, D. Achieving High-Performance Surface-Enhanced Raman Scattering through One-Step Thermal Treatment of Bulk MoS2. J. Phys. Chem. C 2018, 122, 14467–14473. [Google Scholar] [CrossRef]
- Sun, L.F.; Hu, H.L.; Zhan, D.; Yan, J.X.; Liu, L.; Teguh, J.S.; Yeow, E.K.L.; Lee, P.S.; Shen, Z.X. Plasma Modified MoS2 Nanofl akes for Surface Enhanced Raman Scattering. Small 2014, 10, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Morales-Masis, M.; Ding, L.; Dauzou, F.; Jeangros, Q.; Hessler-Wyser, A.; Nicolay, S.; Ballif, C. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films. APL Mater. 2014, 2, 7. [Google Scholar] [CrossRef]
- Liu, Y.L.; Nan, H.Y.; Wu, X.; Pan, W.; Wang, W.H.; Bai, J.; Zhao, W.W.; Sun, L.T.; Wang, X.R.; Ni, Z.H. Layer-by-Layer Thinning of MoS2 by Plasma. ACS Nano 2013, 7, 4202–4209. [Google Scholar] [CrossRef] [PubMed]
- Saifutdinov, A.; Timerkaev, B. Modeling and Comparative Analysis of Atmospheric Pressure Anodic Carbon Arc Discharge in Argon and Helium-Producing Carbon Nanostructures. Nanomaterials 2023, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Li, X.W.; Hao, Y.P.; Li, X.; Liu, F.L. Effect of magnetron sputtering process parameters on the conductivity of thin metal film. AIP Adv. 2023, 13, 12. [Google Scholar] [CrossRef]
- Li, R.R.; Taniguchi, T.; Watanabe, K.; Xue, J.M. Detecting band profiles of devices with conductive atomic force microscopy. Rev. Sci. Instrum. 2020, 91, 6. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Li, H.K.; Jiao, C.; Xu, Q.C.; Xu, X.Y.; Zhang, X.M.; Liu, Y.F.; Dai, Z.Y.; Liu, X.Y.; Chen, W.; et al. Effective hydrogenation of g-C3N4 for enhanced photocatalytic performance revealed by molecular structure dynamics. Appl. Catal. B-Environ. 2019, 250, 63–70. [Google Scholar] [CrossRef]
- Pankove, J.I. Optical Processes in Semiconductors; Dover Publications: New York, NY, USA, 1971. [Google Scholar]
- Marini, C.; Chermisi, D.; Lavagnini, M.; Di Castro, D.; Petrillo, C.; Degiorgi, L.; Scandolo, S.; Postorino, P. High-pressure phases of crystalline tellurium: A combined Raman and ab initio study. Phys. Rev. B 2012, 86, 5. [Google Scholar] [CrossRef]
- Shahzad, F.; Qamar, A.; Nabi, G. Significant enhancement in field emission and photoluminescence properties of vertically aligned tellurium nanorods by plasma treatment. Opt. Mater. 2022, 126, 9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, C.; Wu, T.; Shao, J.; Jing, P.; Xu, H.; Xu, J.; Guo, W.; Liu, Y.; Zhan, D. Evolution of the Electronic Properties of Tellurium Crystals with Plasma Irradiation Treatment. Nanomaterials 2024, 14, 750. https://doi.org/10.3390/nano14090750
Bi C, Wu T, Shao J, Jing P, Xu H, Xu J, Guo W, Liu Y, Zhan D. Evolution of the Electronic Properties of Tellurium Crystals with Plasma Irradiation Treatment. Nanomaterials. 2024; 14(9):750. https://doi.org/10.3390/nano14090750
Chicago/Turabian StyleBi, Congzhi, Tianyu Wu, Jingjing Shao, Pengtao Jing, Hai Xu, Jilian Xu, Wenxi Guo, Yufei Liu, and Da Zhan. 2024. "Evolution of the Electronic Properties of Tellurium Crystals with Plasma Irradiation Treatment" Nanomaterials 14, no. 9: 750. https://doi.org/10.3390/nano14090750
APA StyleBi, C., Wu, T., Shao, J., Jing, P., Xu, H., Xu, J., Guo, W., Liu, Y., & Zhan, D. (2024). Evolution of the Electronic Properties of Tellurium Crystals with Plasma Irradiation Treatment. Nanomaterials, 14(9), 750. https://doi.org/10.3390/nano14090750