Metal–Organic Framework Nanomaterials as a Medicine for Catalytic Tumor Therapy: Recent Advances
Abstract
:1. Introduction
2. Properties of MOFs
3. Advances in MOFs for Tumor Therapy
3.1. MOFs for Drug Delivery
3.2. MOFs for Chemodynamic Therapy
3.3. MOFs for Sonodynamic Therapy
3.4. MOFs for Photothermal therapy
3.5. MOFs for Photodynamic Therapy
3.6. MOFs for Starvation Therapy
3.7. MOFs for Multimodal Synergistic Therapy
4. Summary and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Liu, Y.; Niu, X. Application of artificial intelligence for improving early detection and prediction of therapeutic outcomes for gastric cancer in the era of precision oncology. Semin. Cancer Biol. 2023, 93, 83–96. [Google Scholar] [CrossRef]
- Zhao, P.; Li, H.; Bu, W. A Forward Vision for Chemodynamic Therapy: Issues and Opportunities. Angew. Chem. Int. Ed. Engl. 2023, 62, e202210415. [Google Scholar] [CrossRef]
- Wang, Y.; Zang, P.; Yang, D.; Zhang, R.; Gai, S.; Yang, P. The fundamentals and applications of piezoelectric materials for tumor therapy: Recent advances and outlook. Mater. Horiz. 2023, 10, 1140–1184. [Google Scholar] [CrossRef]
- Xia, Y.; Fu, S.; Ma, Q.; Liu, Y.; Zhang, N. Application of Nano-Delivery Systems in Lymph Nodes for Tumor Immunotherapy. Nanomicro Lett. 2023, 15, 145. [Google Scholar] [CrossRef]
- Zhu, X.; Li, S. Nanomaterials in tumor immunotherapy: New strategies and challenges. Mol. Cancer 2023, 22, 94. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Han, Y.; Jiang, L.; Lu, S.; Wang, B.; Qian, W.; Zhu, M.; Huang, H.; Qian, P. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. J. Hematol. Oncol. 2023, 16, 65. [Google Scholar] [CrossRef]
- Cheng, Y.; Qu, Z.; Jiang, Q.; Xu, T.; Zheng, H.; Ye, P.; He, M.; Tong, Y.; Ma, Y.; Bao, A. Functional Materials for Subcellular Targeting Strategies in Cancer Therapy: Progress and Prospects. Adv. Mater. 2023, e2305095. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, M.; Jiang, Y.; Li, H.; Zhang, J. Application of Gold Nanostructures in Biomedicine. In Materials Science and Technology; Wiley: Hoboken, NJ, USA, 2019; pp. 1–44. [Google Scholar]
- Liu, C.; Guo, L.; Wang, Y.; Zhang, J.; Fu, C. Delivering metal ions by nanomaterials: Turning metal ions into drug-like cancer theranostic agents. Coord. Chem. Rev. 2023, 494, 215332. [Google Scholar] [CrossRef]
- Liu, M.; Sun, T.; Peng, T.; Wu, J.; Li, J.; Chen, S.; Zhang, L.; Li, S.; Zhang, J.; Sun, S. Fe-NC Single-Atom Catalyst with Hierarchical Porous Structure and P–O Bond Coordination for Oxygen Reduction. ACS Energy Lett. 2023, 8, 4531–4539. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, M.; Zhang, Y.; Zhao, Z.; Zhang, Q.; Mu, Z.; Long, Y.; Jiang, Y.; Liu, Y.; Zhang, J.; et al. Harvesting mechanical energy for hydrogen generation by piezoelectric metal–organic frameworks. Mater. Horiz. 2022, 9, 1978–1983. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L.; Su, Y.; Dong, W.; Wang, H.; Liu, Y.; Liu, H.; Liu, L.; Wang, Y. Ultrahigh Enzyme Loading Metal-Organic Frameworks for Deep Tissue Pancreatic Cancer Photoimmunotherapy. Small 2023, 20, e2305131. [Google Scholar] [CrossRef]
- Dastneshan, A.; Rahiminezhad, S.; Naderi Mezajin, M.; Nouri Jevinani, H.; Akbarzadeh, I.; Abdihaji, M.; Qahremani, R.; Jahanbakhshi, M.; Asghari Lalami, Z.; Heydari, H.; et al. Cefazolin encapsulated UIO-66-NH2 nanoparticles enhance the antibacterial activity and biofilm inhibition against drug-resistant S. aureus: In vitro and in vivo studies. Chem. Eng. J. 2023, 455, 140544. [Google Scholar] [CrossRef]
- Fu, D.-Y.; Liu, X.; Zheng, X.; Zhou, M.; Wang, W.; Su, G.; Liu, T.; Wang, L.; Xie, Z. Polymer-metal-organic framework hybrids for bioimaging and cancer therapy. Coord. Chem. Rev. 2022, 456, 214393. [Google Scholar] [CrossRef]
- Gong, X.; Wang, J.; Yang, L.; Li, L.; Gao, X.; Sun, X.; Bai, J.; Liu, J.; Pu, X.; Wang, Y. Enhanced Chemodynamic Therapy Mediated by a Tumor-Specific Catalyst in Synergy with Mitophagy Inhibition Improves the Efficacy for Endometrial Cancer. Small 2023, 19, e2301497. [Google Scholar] [CrossRef]
- Ding, M.; Liu, W.; Gref, R. Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Adv. Drug Deliv. Rev. 2022, 190, 114496. [Google Scholar] [CrossRef]
- Yang, J.; Dai, D.; Zhang, X.; Teng, L.; Ma, L.; Yang, Y.W. Multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer therapy: From single to combination therapy. Theranostics 2023, 13, 295–323. [Google Scholar] [CrossRef]
- Li, S.L.; Jiang, P.; Jiang, F.L.; Liu, Y. Recent Advances in Nanomaterial-Based Nanoplatforms for Chemodynamic Cancer Therapy. Adv. Funct. Mater. 2021, 31, 2100243. [Google Scholar] [CrossRef]
- Duan, H.; Wang, F.; Xu, W.; Sheng, G.; Sun, Z.; Chu, H. Recent advances in the nanoarchitectonics of metal-organic frameworks for light-activated tumor therapy. Dalton Trans. 2023, 52, 16085–16102. [Google Scholar] [CrossRef]
- Liang, S.; Yao, J.; Liu, D.; Rao, L.; Chen, X.; Wang, Z. Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy. Adv. Mater. 2023, 35, 2211130. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Q.; Yang, J.; Wang, T.; Chen, F.; Zhang, K. Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coord. Chem. Rev. 2023, 484, 215115. [Google Scholar] [CrossRef]
- Shen, J.; Chen, G.; Zhao, L.; Huang, G.; Liu, H.; Liu, B.; Miao, Y.; Li, Y. Recent Advances in Nanoplatform Construction Strategy for Alleviating Tumor Hypoxia. Adv. Healthc. Mater. 2023, 12, 2300089. [Google Scholar] [CrossRef]
- Bian, Y.; Liu, B.; Ding, B.; Wang, M.; Yuan, M.; Ma, P.A.; Lin, J. Tumor Microenvironment-Activated Nanocomposite for Self-Amplifying Chemodynamic/Starvation Therapy Enhanced IDO-Blockade Tumor Immunotherapy. Adv. Sci. 2023, 10, 2303580. [Google Scholar] [CrossRef]
- Bian, S.; Zheng, X.; Liu, W.; Gao, Z.; Wan, Y.; Li, J.; Ren, H.; Zhang, W.; Lee, C.-S.; Wang, P. pH-Responsive NIR-II phototheranostic agents for in situ tumor vascular monitoring and combined anti-vascular/photothermal therapy. Biomaterials 2023, 303, 122380. [Google Scholar] [CrossRef]
- McPeck, M.; Smaldone, G.C. Continuous infusion aerosol delivery of prostacyclins during mechanical ventilation: Challenges, limitations, and recent advances. Expert Opin. Drug Deliv. 2022, 19, 465–474. [Google Scholar] [CrossRef]
- Cuccia, A.D.; McPeck, M.; Lee, J.A.; Smaldone, G.C. Multidrug Aerosol Delivery During Mechanical Ventilation. J. Aerosol Med. Pulm. Drug Deliv. 2023, 36, 154–161. [Google Scholar] [CrossRef]
- He, S.; Wu, L.; Li, X.; Sun, H.; Xiong, T.; Liu, J.; Huang, C.; Xu, H.; Sun, H.; Chen, W.; et al. Metal-organic frameworks for advanced drug delivery. Acta Pharm. Sin. B 2021, 11, 2362–2395. [Google Scholar] [CrossRef]
- Fan, W.; Wang, K.-Y.; Welton, C.; Feng, L.; Wang, X.; Liu, X.; Li, Y.; Kang, Z.; Zhou, H.-C.; Wang, R.; et al. Aluminum metal–organic frameworks: From structures to applications. Coord. Chem. Rev. 2023, 489, 215175. [Google Scholar] [CrossRef]
- Tabish, T.A.; Hussain, M.Z.; Fischer, R.A.; Casini, A. Mitochondria-targeted metal–organic frameworks for cancer treatment. Mater. Today 2023, 66, 302–320. [Google Scholar] [CrossRef]
- Wiśniewska, P.; Haponiuk, J.; Saeb, M.R.; Rabiee, N.; Bencherif, S.A. Mitigating metal-organic framework (MOF) toxicity for biomedical applications. Chem. Eng. J. 2023, 471, 144400. [Google Scholar] [CrossRef]
- He, Y.; Li, D.; Wu, L.; Yin, X.; Zhang, X.; Patterson, L.H.; Zhang, J. Metal-Organic Frameworks for Gene Therapy and Detection. Adv. Funct. Mater. 2023, 33, 2212277. [Google Scholar] [CrossRef]
- Wang, Q.; Tian, Y.; Yao, M.; Fu, J.; Wang, L.; Zhu, Y. Bimetallic Organic Frameworks of High Piezovoltage for Sono-Piezo Dynamic Therapy. Adv. Mater. 2023, 35, 2301784. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Yu, H.; Wang, L.; Huang, Z.; Lin, T.; Huang, Y.; Yang, J.; Hong, Y.; Liu, J. State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials. Nano-Micro Lett. 2022, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Verma, G.; Chen, Z.; Hu, B.; Huang, Q.; Yang, H.; Ma, S.; Wang, X. Metal-organic framework nanocrystal-derived hollow porous materials: Synthetic strategies and emerging applications. Innovation 2022, 3, 100281. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Huang, C.; Yao, Y.; Fu, M.; Han, F.; Li, Q.; Wu, M.; Zhang, H.; Xu, L.; Ma, H. Self-assembled MOF microspheres with hierarchical porous structure for efficient uranium adsorption. Sep. Purif. Technol. 2023, 314, 123526. [Google Scholar] [CrossRef]
- Ruan, J.; Dou, T.; Zhang, M.; Shao, W.; Chen, Z.; Guo, H.; Wang, J.; Wei, W.; Qiao, W. Tailored design of 2D MOF derived carbon boosting the low temperature plasma catalysis for water treatment: The role of graphitization and hierarchical porous structure. Chem. Eng. J. 2023, 470, 144316. [Google Scholar] [CrossRef]
- Khan, S.; Falahati, M.; Cho, W.C.; Vahdani, Y.; Siddique, R.; Sharifi, M.; Jaragh-Alhadad, L.A.; Haghighat, S.; Zhang, X.; ten Hagen, T.L.M.; et al. Core–shell inorganic NP@MOF nanostructures for targeted drug delivery and multimodal imaging-guided combination tumor treatment. Adv. Colloid Interface Sci. 2023, 321, 103007. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Chen, C.; Li, B.; Zheng, Y.; Liu, X.; Shen, J.; Zhang, Y.; Wu, S. A core–shell 2D-MoS2@MOF heterostructure for rapid therapy of bacteria-infected wounds by enhanced photocatalysis. Chem. Eng. J. 2023, 451, 139127. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, F.; Xue, G.; Wang, Y.; Li, G.; Tang, Z. Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Sci. China Chem. 2021, 64, 1854–1874. [Google Scholar] [CrossRef]
- Liu, X.; Liang, Q.; Chen, L.; Tang, J.; Liu, J.; Tang, M.; Wang, Z. PEO-Based Solid-State Electrolytes Reinforced by High Strength, Interconnected MOF Networks. ACS Appl. Energy Mater. 2023, 6, 4881–4891. [Google Scholar] [CrossRef]
- Fan, H.; Yao, Z.; Zhou, J.; Yi, P.; Wei, B.; Lei, L.; Mao, Y. Enhanced microwave absorption of epoxy composite by constructing 3D Co–C–MWCNTs derived from metal organic frameworks. J. Mater. Sci. 2021, 56, 1426–1442. [Google Scholar] [CrossRef]
- Lyu, S.; Guo, C.; Wang, J.; Li, Z.; Yang, B.; Lei, L.; Wang, L.; Xiao, J.; Zhang, T.; Hou, Y. Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks. Nat. Commun. 2022, 13, 6171. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wang, C.; Lei, K.; Xiao, C.; Jiang, X.; Zhang, W.; Wu, L.; Huang, J.; Li, W. Multifunctional MOF-Based Microneedle Patch With Synergistic Chemo-Photodynamic Antibacterial Effect and Sustained Release of Growth Factor for Chronic Wound Healing. Adv. Healthc. Mater. 2023, 12, e2300250. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Quintero, L.; Villalgordo-Hernandez, D.; Delgado-Marin, J.J.; Narciso, J.; Velisoju, V.K.; Castano, P.; Gascon, J.; Ramos-Fernandez, E.V. Post-Synthetic Surface Modification of Metal-Organic Frameworks and Their Potential Applications. Small Methods 2023, 7, e2201413. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Li, K.; Yang, J.; Wang, Q.; Gu, J. Photodynamic and Its Concomitant Ion-Interference Synergistic Therapies Based on Functional Hierarchically Mesoporous MOFs. Small 2022, 18, e2204295. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhen, W.; McCleary, C.; Luo, T.; Jiang, X.; Peng, C.; Weichselbaum, R.R.; Lin, W. Nanoscale Metal-Organic Framework with an X-ray Triggerable Prodrug for Synergistic Radiotherapy and Chemotherapy. J. Am. Chem. Soc. 2023, 145, 18698–18704. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Khan, A.I.; Cai, X.; Song, Y.; Lyu, Z.; Du, D.; Dutta, P.; Lin, Y. Overcoming blood–brain barrier transport: Advances in nanoparticle-based drug delivery strategies. Mater. Today 2020, 37, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Zhang, X.; Yang, P.; Zhao, J.; Zhang, W.; Feng, N.; Yang, W.; Tang, J. Defect self-assembly of metal-organic framework triggers ferroptosis to overcome resistance. Bioact. Mater. 2023, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Qin, X.; Zhang, X.; Dai, Y.; Huang, B. A biocompatible bismuth based metal-organic framework as efficient light-sensitive drug carrier. J. Colloid. Interface Sci. 2022, 617, 578–584. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, L.; Gu, L.; Li, Z.; Li, Y.; Wu, Z.; Sun, B.; Wang, X.; Sun, T. Dual-responsive metal organic framework for electrically-enhanced cascade catalytic tumor therapy. Mater. Today Adv. 2023, 17, 100329. [Google Scholar] [CrossRef]
- Lin, S.; Yang, M.; Chen, J.; Feng, W.; Chen, Y.; Zhu, Y. Two-Dimensional FePS3 Nanosheets as an Integrative Sonosensitizer/Nanocatalyst for Efficient Nanodynamic Tumor Therapy. Small 2023, 19, e2204992. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.; Wei, J.; Xiao, Y.; She, Y.; Su, Q.; Zhao, T.; Li, J.; Shao, J. Juglone-loaded metal-organic frameworks for H2O2 self-modulating enhancing chemodynamic therapy against prostate cancer. Chem. Eng. J. 2022, 430, 133057. [Google Scholar] [CrossRef]
- Di, X.; Pei, Z.; Pei, Y.; James, T.D. Tumor microenvironment-oriented MOFs for chemodynamic therapy. Coord. Chem. Rev. 2023, 484, 215098. [Google Scholar] [CrossRef]
- Du, J.; Zhou, M.; Chen, Q.; Tao, Y.; Ren, J.; Zhang, Y.; Qin, H. Disrupting Intracellular Iron Homeostasis by Engineered Metal-Organic Framework for Nanocatalytic Tumor Therapy in Synergy with Autophagy Amplification-Promoted Ferroptosis. Adv. Funct. Mater. 2023, 33, 2215244. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Z.; Gong, H.; Gai, S.; Shen, R. Tirapazamine-loaded UiO-66/Cu for ultrasound-mediated promotion of chemodynamic therapy cascade hypoxia-activated anticancer therapy. J. Colloid. Interface Sci. 2023, 634, 495–508. [Google Scholar] [CrossRef]
- Chen, W.J.; Gupta, D.; Yang, M.; Yang, F.; Feng, N.; Song, J.; Wood, M.J.A.; Qiu, L.; Chen, J. A Purposefully Designed pH/GSH-Responsive MnFe-Based Metal-Organic Frameworks as Cascade Nanoreactor for Enhanced Chemo-Chemodynamic-Starvation Synergistic Therapy. Small 2023, 19, e2303403. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, D.; Yang, J.; Zhu, S.; Shi, J.; Qin, X.; Yin, W.; Wang, J.; Ding, Y.; Chen, T.; et al. Glucose oxidase-amplified CO generation for synergistic anticancer therapy via manganese carbonyl-caged MOFs. Acta Biomater. 2022, 154, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; He, T.; Gong, S.; Shen, M.; Ma, S.; Huang, X.; Li, L.; Wang, L.; Wu, Q.; Gong, C. A tumor pH-responsive autocatalytic nanoreactor as a H2O2 and O2 self-supplying depot for enhanced ROS-based chemo/photodynamic therapy. Acta Biomater. 2022, 154, 510–522. [Google Scholar] [CrossRef]
- Gao, S.; Jin, Y.; Ge, K.; Li, Z.; Liu, H.; Dai, X.; Zhang, Y.; Chen, S.; Liang, X.; Zhang, J. Self-Supply of O2 and H2O2 by a Nanocatalytic Medicine to Enhance Combined Chemo/Chemodynamic Therapy. Adv. Sci. 2019, 6, 1902137. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, A.; Zhou, X.; Liu, Y.; Xu, Y.; Ning, X. An Intelligent Cell-Derived Nanorobot Bridges Synergistic Crosstalk Between Sonodynamic Therapy and Cuproptosis to Promote Cancer Treatment. Nano Lett. 2023, 23, 3038–3047. [Google Scholar] [CrossRef]
- Wang, W.; Pan, X.; Yang, H.; Wang, H.; Wu, Q.; Zheng, L.; Xu, B.; Wang, J.; Shi, X.; Bai, F.; et al. Bioactive Metal-Organic Frameworks with Specific Metal-Nitrogen (M-N) Active Sites for Efficient Sonodynamic Tumor Therapy. ACS Nano 2021, 15, 20003–20012. [Google Scholar] [CrossRef]
- Pu, Y.; Yin, H.; Dong, C.; Xiang, H.; Wu, W.; Zhou, B.; Du, D.; Chen, Y.; Xu, H. Sono-Controllable and ROS-Sensitive CRISPR-Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy. Advanced Materials 2021, 33, 2104641. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.; Xu, Q.; Zhang, Z.; Wei, Z.; Yong, T.; Bie, N.; Zhang, X.; Li, X.; Li, J.; Gan, L.; et al. Biomimetic sonodynamic therapy-nanovaccine integration platform potentiates Anti-PD-1 therapy in hypoxic tumors. Nano Today 2021, 38, 101195. [Google Scholar] [CrossRef]
- Xiao, Z.; Chen, Q.; Yang, Y.; Tu, S.; Wang, B.; Qiu, Y.; Jiang, Y.; Huang, Q.; Ai, K. State of the art advancements in sonodynamic therapy (SDT): Metal-Organic frameworks for SDT. Chem. Eng. J. 2022, 449, 137889. [Google Scholar] [CrossRef]
- Zeng, Y.; Ouyang, Q.; Yu, Y.; Tan, L.; Liu, X.; Zheng, Y.; Wu, S. Defective Homojunction Porphyrin-Based Metal-Organic Frameworks for Highly Efficient Sonodynamic Therapy. Small Methods 2023, 7, e2201248. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Xiao, X.; Bai, L.; Liu, B.; Yuan, M.; Ma, P.; Pang, M.; Cheng, Z.; Lin, J. Conferring Ti-Based MOFs with Defects for Enhanced Sonodynamic Cancer Therapy. Adv. Mater. 2021, 33, e2100333. [Google Scholar] [CrossRef]
- Meng, X.; Sun, S.; Gong, C.; Yang, J.; Yang, Z.; Zhang, X.; Dong, H. Ag-Doped Metal-Organic Frameworks’ Heterostructure for Sonodynamic Therapy of Deep-Seated Cancer and Bacterial Infection. ACS Nano 2022, 17, 1174–1186. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Liu, J.; Wang, J.; Yan, K.; Zhu, K. Recent advancements in the use of novel piezoelectric materials for piezocatalytic and piezo-photocatalytic applications. Appl. Catal. B Environ. 2024, 341, 123335. [Google Scholar] [CrossRef]
- Cai, L.; Du, J.; Han, F.; Shi, T.; Zhang, H.; Lu, Y.; Long, S.; Sun, W.; Fan, J.; Peng, X. Piezoelectric Metal-Organic Frameworks Based Sonosensitizer for Enhanced Nanozyme Catalytic and Sonodynamic Therapies. ACS Nano 2023, 17, 7901–7910. [Google Scholar] [CrossRef]
- Pan, X.; Wang, W.; Huang, Z.; Liu, S.; Guo, J.; Zhang, F.; Yuan, H.; Li, X.; Liu, F.; Liu, H. MOF-Derived Double-Layer Hollow Nanoparticles with Oxygen Generation Ability for Multimodal Imaging-Guided Sonodynamic Therapy. Angew. Chem. Int. Ed. Engl. 2020, 59, 13557–13561. [Google Scholar] [CrossRef]
- Zhang, K.; Meng, X.; Yang, Z.; Dong, H.; Zhang, X. Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem. Biomaterials 2020, 258, 120278. [Google Scholar] [CrossRef]
- Zhang, C.; Xin, L.; Li, J.; Cao, J.; Sun, Y.; Wang, X.; Luo, J.; Zeng, Y.; Li, Q.; Zhang, Y.; et al. Metal-Organic Framework (MOF)-Based Ultrasound-Responsive Dual-Sonosensitizer Nanoplatform for Hypoxic Cancer Therapy. Adv. Healthc. Mater. 2022, 11, e2101946. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, F.; Ma, Q.; Dong, C.; Xiang, H.; Shen, Y.; Sun, P.; Li, C.; Chen, Y.; Lu, B.; Chen, Y.; et al. Sequential Ultrasound-Triggered and Hypoxia-Sensitive Nanoprodrug for Cascade Amplification of Sonochemotherapy. ACS Nano 2022, 16, 5439–5453. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, J.; Yang, Y.; Yang, J.; Wei, Y.; Ma, S.; Shen, Q. Chemodynamic and Photothermal Combination Therapy Based on Dual-Modified Metal-Organic Framework for Inducing Tumor Ferroptosis/Pyroptosis. ACS Appl. Mater. Interfaces 2022, 14, 24089–24101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Meng, X.; Cao, Y.; Yang, Z.; Dong, H.; Zhang, Y.; Lu, H.; Shi, Z.; Zhang, X. Metal–Organic Framework Nanoshuttle for Synergistic Photodynamic and Low-Temperature Photothermal Therapy. Adv. Funct. Mater. 2018, 28, 1804634. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, L.; Liu, M.; Lei, P.; Liu, F.; Xie, Z. Nanoscale Mixed-Component Metal–Organic Frameworks with Photosensitizer Spatial-Arrangement-Dependent Photochemistry for Multimodal-Imaging-Guided Photothermal Therapy. Chem. Mater. 2018, 30, 6867–6876. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Shu, W.; Yang, Y.-S.; Zhu, H.-L.; Shao, C. A self-supplied O2 versatile nanoplatform for GOx-mediated synergistic starvation and hypothermal photothermal therapy. Mater. Des. 2022, 222, 111067. [Google Scholar] [CrossRef]
- Pan, W.L.; Tan, Y.; Meng, W.; Huang, N.H.; Zhao, Y.B.; Yu, Z.Q.; Huang, Z.; Zhang, W.H.; Sun, B.; Chen, J.X. Microenvironment-driven sequential ferroptosis, photodynamic therapy, and chemotherapy for targeted breast cancer therapy by a cancer-cell-membrane-coated nanoscale metal-organic framework. Biomaterials 2022, 283, 121449. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.Z.; Zhu, X.H.; Wang, B.; Liu, M.; Li, S.K.; Yang, Y.S.; An, H.; Zhu, H.L. A versatile nanoplatform based on multivariate porphyrinic metal-organic frameworks for catalytic cascade-enhanced photodynamic therapy. J. Mater. Chem. B 2021, 9, 4678–4689. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Hou, X.; Yang, J.; Zhang, M.; Yang, Y.; Liu, Y.; Shen, W.; Yin, D. Heparin-Coated Photosensitive Metal-Organic Frameworks as Drug Delivery Nanoplatforms of Autophagy Inhibitors for Sensitized Photodynamic Therapy against Breast Cancer. ACS Appl. Mater. Interfaces 2021, 13, 55577–55590. [Google Scholar] [CrossRef]
- Wang, H.; Yu, D.; Fang, J.; Cao, C.; Liu, Z.; Ren, J.; Qu, X. Renal-Clearable Porphyrinic Metal-Organic Framework Nanodots for Enhanced Photodynamic Therapy. ACS Nano 2019, 13, 9206–9217. [Google Scholar] [CrossRef]
- Hang, L.; Zhang, T.; Wen, H.; Liang, L.; Li, W.; Ma, X.; Jiang, G. Controllable photodynamic performance via an acidic microenvironment based on two-dimensional metal-organic frameworks for photodynamic therapy. Nano Res. 2020, 14, 660–666. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Z.; Lu, X.; Wu, P.; Sun, Z.; Chu, H.; Peng, H. Controllable growth of drug-encapsulated metal-organic framework (MOF) on porphyrinic MOF for PDT/chemo-combined therapy. Mater. Des. 2023, 228, 111861. [Google Scholar] [CrossRef]
- Luo, T.; Fan, Y.; Mao, J.; Yuan, E.; You, E.; Xu, Z.; Lin, W. Dimensional Reduction Enhances Photodynamic Therapy of Metal-Organic Nanophotosensitizers. J. Am. Chem. Soc. 2022, 144, 5241–5246. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, B.; Zhao, J.; Di, Z.; Chen, D.; Gu, Z.; Li, L.; Zhao, Y. Nd3+ -Sensitized Upconversion Metal-Organic Frameworks for Mitochondria-Targeted Amplified Photodynamic Therapy. Angew. Chem. Int. Ed. Engl. 2020, 59, 2634–2638. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Bindra, A.K.; Phua, S.Z.F.; Liu, J.; Wu, H.; Wang, D.; Qian, C.; Liu, G.; Zhao, Y. Light-Triggered Hypoxia-Responsive Nanoscale Metal-Organic Frameworks for Highly Efficient Antitumor Treatment. Adv. Opt. Mater. 2022, 11, 2201043. [Google Scholar] [CrossRef]
- Wan, X.; Song, L.; Pan, W.; Zhong, H.; Li, N.; Tang, B. Tumor-Targeted Cascade Nanoreactor Based on Metal–Organic Frameworks for Synergistic Ferroptosis–Starvation Anticancer Therapy. ACS Nano 2020, 14, 11017–11028. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Tang, X.; Liu, J.; Zhu, Z.; Mu, W.; Tang, W.; Zhang, Y.; Chen, X. Precise Starving Therapy via Physiologically Dependent Photothermal Conversion Promoted Mitochondrial Calcification Based on Multi-Functional Gold Nanoparticles for Effective Tumor Treatment. Adv. Funct. Mater. 2023, 33, 2303596. [Google Scholar] [CrossRef]
- Jiang, S.; He, Q.; Li, C.; Dang, K.; Ye, L.; Zhang, W.; Tian, Y. Employing the thiol-ene click reaction via metal-organic frameworks for integrated sonodynamic-starvation therapy as an oncology treatment. Sci. China Mater. 2022, 65, 1112–1121. [Google Scholar] [CrossRef]
- Zhou, G.; Li, M. Near-Infrared-II Plasmonic Trienzyme-Integrated Metal–Organic Frameworks with High-Efficiency Enzyme Cascades for Synergistic Trimodal Oncotherapy. Adv. Mater. 2022, 34, 2200871. [Google Scholar] [CrossRef]
- Huo, T.; Leilei, C.; Nie, H.; Li, W.; Lin, C.; Akhtar, M.; Huang, R. Mitochondrial Dysfunction and Antioxidation Dyshomeostasis-Enhanced Tumor Starvation Synergistic Chemotherapy Achieved using a Metal–Organic Framework-Based Nano-Enzyme Reactor. ACS Appl. Mater. Interfaces 2022, 14, 3675–3684. [Google Scholar] [CrossRef]
- Ni, W.; Jiang, K.; Ke, Q.; Su, J.; Cao, X.; Zhang, L.; Li, C. Development of an intelligent heterojunction fenton catalyst for chemodynamic/starvation synergistic cancer therapy. J. Mater. Sci. Technol. 2023, 141, 11–20. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, L.; Peng, C.; Zhang, S.; Chen, S.; Qian, X.; Luo, W.; Dan, Q.; Ren, Y.; Li, Y.; et al. Tumor microenvironments self-activated nanoscale metal-organic frameworks for ferroptosis based cancer chemodynamic/photothermal/chemo therapy. Acta Pharm. Sin. B 2021, 11, 3231–3243. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xue, F.; Wang, M.; An, L.; Wu, D.; Tian, Q. 2D Cu-Bipyridine MOF Nanosheet as an Agent for Colon Cancer Therapy: A Three-in-One Approach for Enhancing Chemodynamic Therapy. ACS Appl. Mater. Interfaces 2022, 14, 38604–38616. [Google Scholar] [CrossRef] [PubMed]
- Geng, T.; Zhang, J.; Wang, Z.; Shi, Y.; Shi, Y.; Zeng, L. Ultrasmall gold decorated bimetallic metal–organic framework based nanoprobes for enhanced chemodynamic therapy with triple amplification. J. Mater. Chem. B 2023, 11, 2249–2257. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Chi, B.; Tian, F.; Xu, M.; Xu, Z.; Li, L.; Wang, J. Prussian Blue modified Metal Organic Frameworks for imaging guided synergetic tumor therapy with hypoxia modulation. J. Alloys Compd. 2021, 853, 157329. [Google Scholar] [CrossRef]
- Geng, P.; Yu, N.; Macharia, D.K.; Meng, R.; Qiu, P.; Tao, C.; Li, M.; Zhang, H.; Chen, Z.; Lian, W. MOF-derived CuS@Cu-MOF nanocomposites for synergistic photothermal-chemodynamic-chemo therapy. Chem. Eng. J. 2022, 441, 135964. [Google Scholar] [CrossRef]
- Cheng, Y.; Wen, C.; Sun, Y.-Q.; Yu, H.; Yin, X.-B. Mixed-Metal MOF-Derived Hollow Porous Nanocomposite for Trimodality Imaging Guided Reactive Oxygen Species-Augmented Synergistic Therapy. Adv. Funct. Mater. 2021, 31, 2104378. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, M.; Liu, M.; Yu, Q.; Ge, D.; Zhang, J. Metal–Organic Framework Nanomaterials as a Medicine for Catalytic Tumor Therapy: Recent Advances. Nanomaterials 2024, 14, 797. https://doi.org/10.3390/nano14090797
Zhang J, Li M, Liu M, Yu Q, Ge D, Zhang J. Metal–Organic Framework Nanomaterials as a Medicine for Catalytic Tumor Therapy: Recent Advances. Nanomaterials. 2024; 14(9):797. https://doi.org/10.3390/nano14090797
Chicago/Turabian StyleZhang, Jiaojiao, Meiyu Li, Maosong Liu, Qian Yu, Dengfeng Ge, and Jianming Zhang. 2024. "Metal–Organic Framework Nanomaterials as a Medicine for Catalytic Tumor Therapy: Recent Advances" Nanomaterials 14, no. 9: 797. https://doi.org/10.3390/nano14090797
APA StyleZhang, J., Li, M., Liu, M., Yu, Q., Ge, D., & Zhang, J. (2024). Metal–Organic Framework Nanomaterials as a Medicine for Catalytic Tumor Therapy: Recent Advances. Nanomaterials, 14(9), 797. https://doi.org/10.3390/nano14090797