Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel
Abstract
:1. Introduction
2. Experiments and Methods
3. Results
3.1. Mechanical Properties
3.2. Microstructure Characterization
4. Discussion
4.1. Microstructure
4.2. Mechanical Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FCC | Face-centered cubic |
BCC | Body-centered cubic |
KAM | Kernel average misorientation |
Rp0.2 | Yield strength (MPa) |
Rm | Tensile strength (MPa) |
A5, A50 | Elongation (%) |
R | Stress ratio |
σmax | Maximum stress (MPa) |
Nf | Fatigue life |
σa | Stress amplitude (MPa) |
σf′ | Fatigue strength coefficient (MPa) |
b | Fatigue strength index |
σf | True fracture strength (MPa) |
σb | Tensile strength (MPa) |
bd | Dislocation burger vector |
μ | EBSD step size |
n | Simplified fatigue life |
k | The generation rate of dislocations with respect to the simplified fatigue life n |
σ | flow stress |
G | Shear modulus |
ρGND | Dislocation density |
HV | Vickers hardness (MPa) |
A | A constant |
B,C | Fitting parameters |
References
- Li, X.; Wei, D.; Zhang, S.; Qi, Y.; Sun, W.; Zhong, J.; Ning, G. Non-Negligible Corrosion from Vaporized Boric Acid on 304 Stainless Steel. J. Nucl. Mater. 2023, 574, 154188. [Google Scholar] [CrossRef]
- Sun, C.; Zheng, S.; Wei, C.C.; Wu, Y.; Shao, L.; Yang, Y.; Hartwig, K.T.; Maloy, S.A.; Zinkle, S.J.; Allen, T.R.; et al. Superior Radiation-Resistant Nanoengineered Austenitic 304L Stainless Steel for Applications in Extreme Radiation Environments. Sci. Rep. 2015, 5, 7801. [Google Scholar] [CrossRef] [PubMed]
- Haque, R.; Fairweather, H.; Olofinjana, A. Failure Analysis of Boat Rudder Fitting Fabricated from a Type 304 Stainless Steel. J. Fail. Anal. Prev. 2018, 18, 519–525. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Tatman, J.; Feng, Z.; Latour, M.; Miller, R.; Walters, L.; Rosseel, T.M.; Frederick, G. Weldability of Irradiated Stainless Steel 304 Materials Harvested from the National Research Universal (NRU) Reactor. J. Nucl. Mater. 2023, 574, 154193. [Google Scholar] [CrossRef]
- Hoffman, A.; Arivu, M.; Wen, H.; Wu, Y. Advanced Characterization of Phase Stability Under Ion Irradiation of Utrafine-Grained and Nanocrystalline SS304L. Microsc. Microanal. 2020, 26, 402–403. [Google Scholar] [CrossRef]
- Zangeneh, S.; Lashgari, H.R.; Sharifi, H.R. Fitness-for-Service Assessment and Failure Analysis of AISI 304 Demineralized-Water (DM) Pipeline Weld Crack. Eng. Fail. Anal. 2020, 107, 104210. [Google Scholar] [CrossRef]
- Garner, F.A.; Makenas, B.J.; Chastain, S.A. Swelling and Creep Observed in AISI 304 Fuel Pin Cladding from Three MOX Fuel Assemblies Irradiated in EBR-II. J. Nucl. Mater. 2011, 413, 53–61. [Google Scholar] [CrossRef]
- Yang, L.; Sun, K.; Peng, W.; Li, X.; Zhang, L. Effects of Grain Boundary Angles on Initial Deformation of 304 Austenitic Stainless Steel under Nanoindentation: A Molecular Dynamics Simulation. Crystals 2022, 12, 58. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; Xu, C.; Li, Y.; Yin, J.; Jin, X.; Jia, W.; Qian, W.; Wang, P.; Zhang, Y. Study on Corrosion Fatigue Behavior of 304L Austenite Stainless Steel in 325 °C High-Temperature Water Environment. Metals 2024, 14, 489. [Google Scholar] [CrossRef]
- Vainionpää, A.; Seppänen, T.; Que, Z. Effects of Pressurized Water Reactor Environment and Cyclic Loading Parameters on the Low Cycle Fatigue Behavior of 304L Stainless Steel. Int. J. Fatigue 2024, 182, 108231. [Google Scholar] [CrossRef]
- Chou, L.-H.; Chiou, Y.-C.; Huang, Y.-J. The Effects of Pre-Cycle Damage on Subsequent Material Behavior and Fatigue Resistance of SUS 304 Stainless Steel. Mater. Sci. Eng. A 2015, 636, 320–325. [Google Scholar] [CrossRef]
- Tasdighi, E.; Nobakhti, H.; Soltani, N. Application of Small Punch Test in Predicting the Axial Fatigue Life of 304 Stainless Steel Sheets. Exp. Tech. 2016, 40, 1349–1357. [Google Scholar] [CrossRef]
- Erinosho, T.O.; Li, P.; Truman, C.E.; Smith, D.J. Pressure, Temperature and Dwell Time Effects on Fatigue Life in 304 Stainless Steel Using a R5-Based Mechanistic Fatigue Model. Procedia Eng. 2016, 160, 191–198. [Google Scholar] [CrossRef]
- Lesiuk, G.; Zimniak, Z.; Wiśniewski, W.; Correia, J.A.F.O. Fatigue Lifetime Improvement in AISI 304 Stainless Steel Due to High-Density Electropulsing. Procedia Struct. Integr. 2017, 5, 928–934. [Google Scholar] [CrossRef]
- Mehdizadeh, M.; Khonsari, M.M. On the Application of Fracture Fatigue Entropy to Variable Frequency and Loading Amplitude. Theor. Appl. Fract. Mech. 2018, 98, 30–37. [Google Scholar] [CrossRef]
- Mei, T.; Wang, Q.; Liu, M.; Jiang, Y.; Zou, T.; Cai, Y. The Low-Cycle Fatigue Behavior, Microstructure Evolution, and Life Prediction of SS304: Influence of Temperature. Materials 2023, 16, 6326. [Google Scholar] [CrossRef]
- Ji, S.; Liu, C.; Li, Y.; Shi, S.; Chen, X. Effect of Torsional Pre-Strain on Low Cycle Fatigue Performance of 304 Stainless Steel. Mater. Sci. Eng. A 2019, 746, 50–57. [Google Scholar] [CrossRef]
- Paventhan, R.; Lakshminarayanan, P.R.; Balasubramanian, V. Fatigue Behaviour of Friction Welded Medium Carbon Steel and Austenitic Stainless Steel Dissimilar Joints. Mater. Des. 2011, 32, 1888–1894. [Google Scholar] [CrossRef]
- Chaboche, J.L.; Lesne, P.M. A Non-Linear Continuous Fatigue Damage Model. Fatigue Fract. Eng. Mater. Struct. 1988, 11, 1–17. [Google Scholar] [CrossRef]
- Yang, X. A Continuous Low Cycle Fatigue Damage Model and Its Application in Engineering Materials. Int. J. Fatigue 1997, 19, 687–692. [Google Scholar] [CrossRef]
- Lippmann, H. A Course on Damage Mechanics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1996; ISBN 978-3-642-18255-6. [Google Scholar]
- Kunc, R.; Prebil, I. Low-Cycle Fatigue Properties of Steel 42CrMo4. Mater. Sci. Eng. A 2003, 345, 278–285. [Google Scholar] [CrossRef]
- Wang, T.-J. Unified CDM Model and Local Criterion for Ductile Fracture—II. Ductile Fracture Local Criterion Based on the CDM Model. Eng. Fract. Mech. 1992, 42, 185–193. [Google Scholar] [CrossRef]
- Chandrakantht, S.; Pandey, P.C. An Isotropic Damage Model For Ductile Material. Eng. Fract. Mech. 1995, 50, 457–465. [Google Scholar] [CrossRef]
- GB/T 3075-2008; Metallic materials-Fatigue testing-Axial-force-controlled method. Standardization Administration of China: Beijing, China, 2008.
- He, B.B.; Hu, B.; Yen, H.W.; Cheng, G.J.; Wang, Z.K.; Luo, H.W.; Huang, M.X. High Dislocation Density–Induced Large Ductility in Deformed and Partitioned Steels. Science 2017, 357, 1029–1032. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, S.; Fineberg, J. Tensile Cracks Can Shatter Classical Speed Limits. Science 2023, 381, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Dejun, K. Effects of Micro Arc Oxidation on Fatigue Limits and Fracture Morphologies of 7475 High Strength Aluminum Alloy. J. Alloys Compd. 2015, 650, 393–398. [Google Scholar] [CrossRef]
- Ni, H.; Zhang, S.; Lei, H. Experimental Study on Variable Amplitude Fatigue Performance of High-Strength Bolts in Steel Structure Flange Connections. Buildings 2024, 14, 3736. [Google Scholar] [CrossRef]
- Milella, P.P. Morphological Aspects of Fatigue Crack Formation and Growth. In Fatigue and Corrosion in Metals; Springer Milan: Milan, Italy, 2013; pp. 73–108. ISBN 978-88-470-2335-2. [Google Scholar]
- Das, A.; Tarafder, S.; Chakraborti, P.C. Estimation of Deformation Induced Martensite in Austenitic Stainless Steels. Mater. Sci. Eng. A 2011, 529, 9–20. [Google Scholar] [CrossRef]
- Lavenstein, S.; Gu, Y.; Madisetti, D.; El-Awady, J.A. The Heterogeneity of Persistent Slip Band Nucleation and Evolution in Metals at the Micrometer Scale. Science 2020, 370, eabb2690. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Xu, Y.; Xiao, L.; Cha, H. Effects of Low-Cycle Fatigue on Static Mechanical Properties, Microstructures and Fracture Behavior of 304 Stainless Steel. Mater. Sci. Eng. A 2010, 527, 4092–4102. [Google Scholar] [CrossRef]
- Ganesh Sundara Raman, S.; Padmanabhan, K.A. Influence of Martensite Formation and Grain Size on Room Temperature Low Cycle Fatigue Behaviour of AISI 304LN Austenitic Stainless Steel. Mater. Sci. Technol. 1994, 10, 614–620. [Google Scholar] [CrossRef]
- Hahnenberger, F.; Smaga, M.; Eifler, D. Microstructural Investigation of the Fatigue Behavior and Phase Transformation in Metastable Austenitic Steels at Ambient and Lower Temperatures. Int. J. Fatigue 2014, 69, 36–48. [Google Scholar] [CrossRef]
- Sohrabi, M.J.; Naghizadeh, M.; Mirzadeh, H. Deformation-Induced Martensite in Austenitic Stainless Steels: A Review. Arch. Civ. Mech. Eng. 2020, 20, 124. [Google Scholar] [CrossRef]
- Yin, T.W. Controllable Selection of Martensitic Variant Enables Concurrent Enhancement of Strength and Ductility in a Low-Carbon Steel. Int. J. Plast. 2023, 168, 103704. [Google Scholar] [CrossRef]
- Cao, B.; Iwamoto, T.; Bhattacharjee, P.P. An Experimental Study on Strain-Induced Martensitic Transformation Behavior in SUS304 Austenitic Stainless Steel during Higher Strain Rate Deformation by Continuous Evaluation of Relative Magnetic Permeability. Mater. Sci. Eng. A 2020, 774, 138927. [Google Scholar] [CrossRef]
- Nabarro, F.R.N.; Hirth, J.P. Dislocations in Solids; Elsevier North Holland: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Hirth, J.P.; Lothe, J.; Mura, T. Theory of Dislocations (2nd Ed.). J. Appl. Mech. 1983, 50, 476–477. [Google Scholar] [CrossRef]
- Taylor, G.I. The Mechanism of Plastic Deformation of Crystals. Part I.—Theoretical. Proc. R. Soc. Lond. A. 1934, 145, 362–387. [Google Scholar] [CrossRef]
- Höppel, H.W.; Goik, P.; Krechel, C.; Göken, M. Ex and in Situ Investigations on the Role of Persistent Slip Bands and Grain Boundaries in Fatigue Crack Initiation. J. Mater. Res. 2017, 32, 4276–4286. [Google Scholar] [CrossRef]
- Lavenstein, S.; El-Awady, J.A. Micro-Scale Fatigue Mechanisms in Metals: Insights Gained from Small-Scale Experiments and Discrete Dislocation Dynamics Simulations. Curr. Opin. Solid State Mater. Sci. 2019, 23, 100765. [Google Scholar] [CrossRef]
- Straub, T.; Berwind, M.F.; Kennerknecht, T.; Lapusta, Y.; Eberl, C. Small-Scale Multiaxial Setup for Damage Detection Into the Very High Cycle Fatigue Regime. Exp. Mech. 2015, 55, 1285–1299. [Google Scholar] [CrossRef]
- Sangid, M.D. The Physics of Fatigue Crack Initiation. Int. J. Fatigue 2013, 57, 58–72. [Google Scholar] [CrossRef]
- Farahani, E.B.; Aragh, B.S.; Juhre, D. Interplay of Fracture and Martensite Transformation in Microstructures: A Coupled Problem. Materials 2022, 15, 6744. [Google Scholar] [CrossRef]
- Tabata, T.; Fujita, H.; Hiraoka, M.-A.; Onishi, K. Dislocation Behaviour and the Formation of Persistent Slip Bands in Fatigued Copper Single Crystals Observed by High-Voltage Electron Microscopy. Philos. Mag. A 1983, 47, 841–857. [Google Scholar] [CrossRef]
- Oh, B. The Exponential Law of Endurance Tests. Am. Soc. Test. Mater. Proc. 1910, 10, 625–630. [Google Scholar]
- Morrow, J.D. Fatigue Design Handbook Advances in Engineering; Society of Automotive Engineers: Warrendale, PA, USA, 1968; pp. 21–29. [Google Scholar]
- Li, S.M. Mechanical Fatigue and Reliability Design; Science Publishers: Beijing, China, 2006; pp. 113–114. [Google Scholar]
- Yan, Z.; Wang, D.; He, X.; Wang, W.; Zhang, H.; Dong, P.; Li, C.; Li, Y.; Zhou, J.; Liu, Z.; et al. Deformation Behaviors and Cyclic Strength Assessment of AZ31B Magnesium Alloy Based on Steady Ratcheting Effect. Mater. Sci. Eng. A 2018, 723, 212–220. [Google Scholar] [CrossRef]
- Basinski, Z.S. Forest Hardening in Face Centred Cubic Metals. Scr. Metall. 1974, 8, 1301–1307. [Google Scholar] [CrossRef]
- Franciosi, P.; Berveiller, M.; Zaoui, A. Latent Hardening in Copper and Aluminium Single Crystals. Acta Metall. 1980, 28, 273–283. [Google Scholar] [CrossRef]
- Zhu, Y.; Xiang, Y.; Schulz, K. The Role of Dislocation Pile-up in Flow Stress Determination and Strain Hardening. Scr. Mater. 2016, 116, 53–56. [Google Scholar] [CrossRef]
- Rudnytskyj, A.; Varga, M.; Krenn, S.; Vorlaufer, G.; Leimhofer, J.; Jech, M.; Gachot, C. Investigating the Relationship of Hardness and Flow Stress in Metal Forming. Int. J. Mech. Sci. 2022, 232, 107571. [Google Scholar] [CrossRef]
Element | C | Si | Mn | P | S | Cr | Ni | N |
---|---|---|---|---|---|---|---|---|
Mass Percent | 0.04 | 0.47 | 1.04 | 0.030 | 0.001 | 18.02 | 8.04 | 0.03 |
Brand Number | Yield Strength Rp0.2 (MPa) | Tensile Strength Rm (MPa) | Elongation A5 (%) | Elongation A50 (%) |
---|---|---|---|---|
S30408 | 281 | 710 | 59.0 | 52 |
NO. | Max Stress (MPa) | Interrupted Fatigue State (Cycle) | Fatigue Life (Cycle) | Elongation (mm) |
---|---|---|---|---|
1 | 635 | / | 57,928 | 27 |
2 | 660 | 1, 3437, 6874, 13,749, 27498 | 54,997 | 33 |
3 | 700 | / | 38,981 | 39 |
4 | 730 | 1, 2054, 4108, 8217, 16,435 | 32,870 | 42 |
No. | σmax (MPa) | Nf (Cycle) | Cal. σa1 (Mpa) | Exp. σa2 (Mpa) | Error.(σa2−σa1)/σa1 (%) |
---|---|---|---|---|---|
1 | 635 | 57928 | 287.5371032 | 285.75 | −0.62% |
2 | 660 | 54997 | 289.212464 | 297 | 2.69% |
3 | 700 | 38981 | 300.5683836 | 315 | 4.80% |
4 | 730 | 32870 | 306.3580274 | 328.5 | 7.23% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Xiao, M.; Hao, J.; Ma, X.; Jiang, N.; Peng, Q.; Ye, C. Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel. Nanomaterials 2025, 15, 71. https://doi.org/10.3390/nano15010071
Liu H, Xiao M, Hao J, Ma X, Jiang N, Peng Q, Ye C. Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel. Nanomaterials. 2025; 15(1):71. https://doi.org/10.3390/nano15010071
Chicago/Turabian StyleLiu, Huiping, Mingkun Xiao, Jiannan Hao, Xinjie Ma, Ni Jiang, Qing Peng, and Chao Ye. 2025. "Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel" Nanomaterials 15, no. 1: 71. https://doi.org/10.3390/nano15010071
APA StyleLiu, H., Xiao, M., Hao, J., Ma, X., Jiang, N., Peng, Q., & Ye, C. (2025). Micro-Defects-Related Low Cycle Fatigue Mechanical Model of the Nuclear-Grade S30408 Stainless Steel. Nanomaterials, 15(1), 71. https://doi.org/10.3390/nano15010071