Temperature Sensing in Agarose/Silk Fibroin Translucent Hydrogels: Preparation of an Environment for Long-Term Observation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Micelle Preparation
2.3. Hydrogel Preparation
2.4. Spectroscopic Measurements
3. Results and Discussion
3.1. Micellar Systems
3.2. TTA–UC in Hydrogel
3.3. Creating a Calibration Curve
3.4. TTA-UC in Dulbecco’s Modified Eagle’s Medium
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suzuki, M.; Tseeb, V.; Oyama, K.; Ishiwata, S. Microscopic detection of thermogenesis in a single HeLa cell. Biophys. J. 2007, 92, L46–L48. [Google Scholar] [CrossRef]
- Sotoma, S.; Okita, H.; Chuma, S.; Harada, Y. Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity. Biophys. Physicobiol. 2022, 19, e190034. [Google Scholar] [CrossRef]
- Yang, F.; Yang, N.; Huo, X.; Xu, S. Thermal sensing in fluid at the micro-nano-scales. Biomicrofluidics 2018, 12, 041501. [Google Scholar] [CrossRef]
- Oliveira, M.; Conceição, P.; Kant, K.; Ainla, A.; Diéguez, L. Electrochemical sensing in 3d cell culture models: New tools for developing better cancer diagnostics and treatments. Cancers 2021, 13, 1381. [Google Scholar] [CrossRef]
- Zhou, J.; del Rosal, B.; Jaque, D.; Uchiyama, S.; Jin, D. Advances and challenges for fluorescence nanothermometry. Nat. Methods 2020, 17, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.H.; Peng, H.S.; Chang, Z.; Hou, L.L.; You, F.T.; Teng, F.; Song, H.W.; Dong, B. Synthesis of ratiometric fluorescent nanoparticles for sensing oxygen. Microchim. Acta 2012, 178, 147–152. [Google Scholar] [CrossRef]
- Wu, C.; Bull, B.; Christensen, K.; McNeill, J. Ratiometric Single-Nanoparticle Oxygen Sensors for Biological Imaging. Angew. Chem. 2009, 121, 2779–2783. [Google Scholar] [CrossRef]
- Spencer, J.A.; Ferraro, F.; Roussakis, E.; Klein, A.; Wu, J.; Runnels, J.M.; Zaher, W.; Mortensen, L.J.; Alt, C.; Turcotte, R.; et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 2014, 508, 269–273. [Google Scholar] [CrossRef]
- Nazarova, N.V.; Avlasevich, Y.S.; Landfester, K.; Baluschev, S. Stimuli-responsive protection of optically excited triplet ensembles against deactivation by molecular oxygen. Dalt. Trans. 2018, 47, 8605–8610. [Google Scholar] [CrossRef]
- Vinogradov, S.A.; Lo, L.W.; Jenkins, W.T.; Evans, S.M.; Koch, C.; Wilson, D.F. Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors. Biophys. J. 1996, 70, 1609–1617. [Google Scholar] [CrossRef]
- Briñas, R.P.; Troxler, T.; Hochstrasser, R.M.; Vinogradov, S.A. Phosphorescent oxygen sensor with dendritic protection and two-photon absorbing antenna. J. Am. Chem. Soc. 2005, 127, 11851–11862. [Google Scholar] [CrossRef]
- Achatz, D.E.; Meier, R.J.; Fischer, L.H.; Wolfbeis, O.S. Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles. Angew. Chem.—Int. Ed. 2011, 50, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gorris, H.H.; Stolwijk, J.A.; Meier, R.J.; Groegel, D.B.; Wegener, J.; Wolfbeis, O.S. Self-referenced RGB colour imaging of intracellular oxygen. Chem. Sci. 2011, 2, 901–906. [Google Scholar] [CrossRef]
- Schulze, T.F.; Czolk, J.; Cheng, Y.-Y.; Fückel, B.; MacQueen, R.W.; Khoury, T.; Crossley, M.J.; Stannowski, B.; Lips, K.; Lemmer, U.; et al. Efficiency enhancement of organic and thin-film silicon solar cells with photochemical upconversion. J. Phys. Chem. C 2012, 116, 22794–22801. [Google Scholar] [CrossRef]
- Zou, W.; Visser, C.; Maduro, J.A.; Pshenichnikov, M.S.; Hummelen, J.C. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 2012, 6, 560–564. [Google Scholar] [CrossRef]
- Duan, P.; Yanai, N.; Nagatomi, H.; Kimizuka, N. Photon upconversion in supramolecular gel matrixes: Spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability. J. Am. Chem. Soc. 2015, 137, 1887–1894. [Google Scholar] [CrossRef] [PubMed]
- Schulze, T.F.; Schmidt, T.W. Photochemical upconversion: Present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 2015, 8, 103–125. [Google Scholar] [CrossRef]
- Keivanidis, P.E.; Baluschev, S.; Lieser, G.; Wegner, G. Inherent photon energy recycling effects in the upconverted delayed luminescence dynamics of poly(fluorene)-PtIIoctaethyl porphyrin blends. ChemPhysChem 2009, 10, 2316–2326. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465. [Google Scholar] [CrossRef]
- Wohnhaas, C.; Friedemann, K.; Busko, D.; Landfester, K.; Baluschev, S.; Crespy, D.; Turshatov, A. All organic nanofibers as ultralight versatile support for triplet-triplet annihilation upconversion. ACS Macro Lett. 2013, 2, 446–450. [Google Scholar] [CrossRef]
- Singh-Rachford, T.N.; Castellano, F.N. Photon upconversion based on sensitized triplet-triplet annihilation. Coord. Chem. Rev. 2010, 254, 2560–2573. [Google Scholar] [CrossRef]
- Lin, T.A.; Perkinson, C.F.; Baldo, M.A. Strategies for High-Performance Solid-State Triplet–Triplet-Annihilation-Based Photon Upconversion. Adv. Mater. 2020, 32, e1908175. [Google Scholar] [CrossRef]
- Joarder, B.; Yanai, N.; Kimizuka, N. Solid-State Photon Upconversion Materials: Structural Integrity and Triplet-Singlet Dual Energy Migration. J. Phys. Chem. Lett. 2018, 9, 4613–4624. [Google Scholar] [CrossRef]
- Iyisan, B.; Thiramanas, R.; Nazarova, N.; Avlasevich, Y.; Mailänder, V.; Baluschev, S.; Landfester, K. Temperature Sensing in Cells Using Polymeric Upconversion Nanocapsules. Biomacromolecules 2020, 21, 4469–4478. [Google Scholar] [CrossRef]
- Baluschev, S. Protective Strategies Toward Long-Term Operation of Annihilation Photon Energy Upconversion BT. In Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells; Lissau, J.S., Madsen, M., Eds.; Redefining the Limits of Solar Power Conversion Efficiency; Springer: Cham, Switzerland, 2022; pp. 149–167. [Google Scholar] [CrossRef]
- Busko, D. Noncoherent Upconversion in Multimolecular Organic Systems. Ph.D. Thesis, Johannes Gutenberg University Mainz, Mainz, Germany, 2013. [Google Scholar]
- Nazarova, N.; Avlasevich, Y.; Landfester, K.; Baluschev, S. All-Optical Temperature Sensing in Organogel Matrices via Annihilation Upconversion. ChemPhotoChem 2019, 3, 1020–1026. [Google Scholar] [CrossRef]
- Landfester, K.; Avlasesvich, Y.; Busko, D.; Wurm, F.; Balouchev, S. Single All-Optical Nano-Sensor Device Probing Simultaneously the Local Temperature and Local Oxygen Concentration in Soft-Matter in Non-Invasive Manner. WO2016150677А1, 29 September 2016. [Google Scholar]
- Micheva, M.; Baluschev, S.; Landfester, K. Thermally activated delayed fluorescence in an optically accessed soft matter environment. J. Mater. Chem. C 2022, 10, 4533–4545. [Google Scholar] [CrossRef]
- Penconi, M.; Gentili, P.L.; Massaro, G.; Elisei, F.; Ortica, F. A triplet-triplet annihilation based up-conversion process investigated in homogeneous solutions and oil-in-water microemulsions of a surfactant. Photochem. Photobiol. Sci. 2014, 13, 48–61. [Google Scholar] [CrossRef]
- Lee, H.-L.; Park, J.H.; Choe, H.-S.; Lee, M.-S.; Park, J.-M.; Harada, N.; Sasaki, Y.; Yanai, N.; Kimizuka, N.; Zhu, J.; et al. Upconverting Oil-Laden Hollow Mesoporous Silica Microcapsules for Anti-Stokes-Based Biophotonic Applications. ACS Appl. Mater. Interfaces 2019, 11, 26571–26580. [Google Scholar] [CrossRef]
- Oddo, A.M.; Mani, T.; Kumar, C.V. Micelles Embedded in Multiphasic Protein Hydrogel Enable Efficient and Air-Tolerant Triplet Fusion Upconversion with Heavy-Atom and Spin-Orbit Charge-Transfer Sensitizers. ACS Appl. Mater. Interfaces 2020, 12, 39293–39303. [Google Scholar] [CrossRef]
- Huang, L.; Le, T.; Huang, K.; Han, G. Enzymatic enhancing of triplet–triplet annihilation upconversion by breaking oxygen quenching for background-free biological sensing. Nat. Commun. 2021, 12, 1898. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, A.; Kanzaki, T. Swelling of agarose gel and its related changes. Top. Catal. 1987, 1, 317–325. [Google Scholar] [CrossRef]
- Kim, U.J.; Park, J.; Li, C.; Jin, H.J.; Valluzzi, R.; Kaplan, D.L. Structure and properties of silk hydrogels. Biomacromolecules 2004, 5, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Baluschev, S.; Yakutkin, V.; Wegner, G.; Miteva, T.; Nelles, G.; Yasuda, A.; Chernov, S.; Aleshchenkov, S.; Cheprakov, A. Upconversion with ultrabroad excitation band: Simultaneous use of two sensitizers. Appl. Phys. Lett. 2007, 90, 181103. [Google Scholar] [CrossRef]
- Mattiello, S.; Monguzzi, A.; Pedrini, J.; Sassi, M.; Villa, C.; Torrente, Y.; Marotta, R.; Meinardi, F.; Beverina, L. Self-Assembled Dual Dye-Doped Nanosized Micelles for High-Contrast Up-Conversion Bioimaging. Adv. Funct. Mater. 2016, 26, 8447–8454. [Google Scholar] [CrossRef]
- Healy, B.J.; Zahmatkesh, M.H.; Nitschke, K.N.; Baldock, C. Effect of saccharide additives on response of ferrous-agarose-xylenol orange radiotherapy gel dosimeters. Med. Phys. 2003, 30, 2282–2291. [Google Scholar] [CrossRef] [PubMed]
- Floren, M.; Migliaresi, C.; Motta, A. Processing Techniques and Applications of Silk Hydrogels in Bioengineering. J. Funct. Biomater. 2016, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Correa, S.; Grosskopf, A.K.; Hernandez, H.L.; Chan, D.; Yu, A.C.; Stapleton, L.M.; Appel, E.A. Translational Applications of Hydrogels. Chem. Rev. 2021, 121, 11385–11457. [Google Scholar] [CrossRef]
- Holland, C.; Numata, K.; Rnjak-Kovacina, J.; Seib, F.P. The Biomedical Use of Silk: Past, Present, Future. Adv. Healthc. Mater. 2019, 8, e1800465. [Google Scholar] [CrossRef]
- Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631. [Google Scholar] [CrossRef]
- Leisk, G.G.; Lo, T.J.; Yucel, T.; Lu, Q.; Kaplan, D.L. Electrogelation for protein adhesives. Adv. Mater. 2010, 22, 711–715. [Google Scholar] [CrossRef]
- Silva, S.S.; Motta, A.; Rodrigues, M.T.; Pinheiro, A.F.; Gomes, M.E.; Mano, J.F.; Reis, R.L.; Migliaresi, C. Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules 2008, 9, 2764–2774. [Google Scholar] [CrossRef] [PubMed]
- Richterová, V.; Pekař, M. Effect of Silk Fibroin on the Mechanical and Transport Properties of Agarose Hydrogels. Gels 2024, 10, 611. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Tramsport Phenomena, 2nd ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Davis, G. Absorbance Spectra of Phenol Red at Different pH Values. Available online: https://cran.r-project.org/web/packages/colorSpec/vignettes/phenolred.html (accessed on 10 December 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Micheva, M.; Baluschev, S.; Landfester, K. Temperature Sensing in Agarose/Silk Fibroin Translucent Hydrogels: Preparation of an Environment for Long-Term Observation. Nanomaterials 2025, 15, 123. https://doi.org/10.3390/nano15020123
Micheva M, Baluschev S, Landfester K. Temperature Sensing in Agarose/Silk Fibroin Translucent Hydrogels: Preparation of an Environment for Long-Term Observation. Nanomaterials. 2025; 15(2):123. https://doi.org/10.3390/nano15020123
Chicago/Turabian StyleMicheva, Maria, Stanislav Baluschev, and Katharina Landfester. 2025. "Temperature Sensing in Agarose/Silk Fibroin Translucent Hydrogels: Preparation of an Environment for Long-Term Observation" Nanomaterials 15, no. 2: 123. https://doi.org/10.3390/nano15020123
APA StyleMicheva, M., Baluschev, S., & Landfester, K. (2025). Temperature Sensing in Agarose/Silk Fibroin Translucent Hydrogels: Preparation of an Environment for Long-Term Observation. Nanomaterials, 15(2), 123. https://doi.org/10.3390/nano15020123