Preparation and Gas-Sensitive Properties of Square–Star-Shaped Leaf-Like BiVO4 Nanomaterials
Abstract
:1. Introduction
2. Experience Section
2.1. Chemical Reagents
2.2. Experimental Method
2.2.1. Preparation of BiVO4 Powder
2.2.2. Characterization
2.2.3. Fabrication and Testing of BiVO4 Sensors
3. Results and Discussion
3.1. Characterization of BiVO4
3.2. Gas-Sensing Performance
3.3. Gas-Sensing Mechanisms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Li, Z.; Xu, S.; Ren, X.; Han, D.; Lu, D. Facile in situ hydrothermal synthesis of BiVO4/MWCNT nanocomposites as high performance visible-light driven photocatalysts. J. Phys. Chem. Solids 2014, 75, 977–983. [Google Scholar] [CrossRef]
- Chen, Z.; Mi, N.; Huang, L.; Wang, W.; Li, C.; Teng, Y.; Gu, C. Snow-like BiVO4 with rich oxygen defects for efficient visible light photocatalytic degradation of ciprofloxacin. Sci. Total Environ. 2022, 808, 152083. [Google Scholar] [CrossRef] [PubMed]
- Rather, R.A.; Khan, M.; Lo IM, C. High charge transfer response of g-C3N4/Ag/AgCl/BiVO4 microstructure for the selective photocatalytic reduction of CO2 to CH4 under alkali activation. J. Catal. 2018, 366, 28–36. [Google Scholar] [CrossRef]
- Kumar, M.; Ansari, M.N.M.; Boukhris, I.; Al-Buriahi, M.S.; Alrowaili, Z.A.; Alfryyan, N.; Vaish, R. Sonophotocatalytic dye degradation using rGO-BiVO4 composites. Glob. Chall. 2022, 6, 2100132. [Google Scholar] [CrossRef]
- Liaqat, M.; Khalid, N.R. Fabrication of Novel BiVO4 Homostructure with Superior Visible Light Induced Photocatalytic Properties Using Directing Agents. Water Air Soil Pollut. 2023, 234, 297. [Google Scholar] [CrossRef]
- da Cruz Severo, E.; Dotto, G.L.; Martínez-de la Cruz, A.; Cuellar, E.L.; Foletto, E.L. Enhanced photocatalytic activity of BiVO4 powders synthesized in presence of EDTA for the decolorization of rhodamine B from aqueous solution. Environ. Sci. Pollut. Res. 2018, 25, 34123–34130. [Google Scholar] [CrossRef]
- Li, M.; Yang, X.; Shen, C.; Ji, J.; Wu, Y.; Li, L. Improving gas sensing performance of BiVO4 nanoplates with {040} growing facets induced by Bi3+. J. Mater. Sci.-Mater. Electron. 2023, 34, 1618. [Google Scholar] [CrossRef]
- Sánchez-Albores, R.M.; Reyes-Vallejo, O.; Ríos-Valdovinos, E.; Fernández-Madrigal, A.; Pola-Albores, F.; Enríquez-Flores, C.I.; Moreira-Acosta, J. Characterization and photoelectrochemical evaluation of BiVO4 films developed by thermal oxidation of metallic Bi films electrodeposited. Mater. Sci. Semicond. Process. 2023, 153, 107184. [Google Scholar] [CrossRef]
- Arulazi, V.; Kalainathan, S. Molybdenum-doped BiVO4 thin films deposited through chemical spray pyrolysis for ammonia sensing at room temperature. J. Mater. Sci.-Mater. Electron. 2024, 35, 347. [Google Scholar] [CrossRef]
- Qiao, X.; Xu, Y.; Yang, K.; Ma, J.; Li, C.; Wang, H.; Jia, L. Mo doped BiVO4 gas sensor with high sensitivity and selectivity towards H2S. Chem. Eng. J. 2020, 395, 125144. [Google Scholar] [CrossRef]
- Sun, L.; Sun, J.; Han, N.; Liao, D.; Bai, S.; Yang, X.; Chen, A. rGO decorated W doped BiVO4 novel material for sensing detection of trimethylamine. Sens. Actuators B Chem. 2019, 298, 126749. [Google Scholar] [CrossRef]
- Malathi, A.; Madhavan, J.; Ashokkumar, M.; Arunachalam, P. A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Appl. Catal. A Gen. 2018, 555, 47–74. [Google Scholar]
- Bai, S.; Sun, L.; Sun, J.; Han, J.; Zhang, K.; Li, Q.; Chen, A. Pine dendritic bismuth vanadate loaded on reduced graphene oxide for detection of low concentration triethylamine. J. Colloid Interface Sci. 2021, 587, 183–191. [Google Scholar] [CrossRef]
- Pei, S.; Ma, S.; Xu, X.; Almamoun, O.; Ma, Y.; Xu, X. Exploring gas-sensing characteristics of (CH2OH) 2 with controlling the morphology of BiVO4 by adjusting pH of solution. J. Alloys Compd. 2021, 859, 158400. [Google Scholar] [CrossRef]
- Cao, P.F.; Ma, S.Y.; Xu, X.L. Novel ultra-sensitive dandelion-like Bi2WO6 nanostructures for ethylene glycol sensing application. Vacuum 2020, 181, 109748. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Sysoev, V.V.; Varezhnikov, A.S.; Solomatin, M.A.; Struchkov, N.S.; Stolyarova, D.Y.; Brunkov, P.N. Toward On-Chip Multisensor Arrays for Selective Methanol and Ethanol Detection at Room Temperature: Capitalizing the Graphene Carbonylation. ACS Appl. Mater. Interfaces 2023, 15, 28370–28386. [Google Scholar] [CrossRef]
- Butko, A.V.; Butko, V.Y.; Kumzerov, Y.A. Dirac Electrons with Molecular Relaxation Time at Electrochemical Interface between Graphene and Water. Int. J. Mol. Sci. 2024, 25, 10083. [Google Scholar] [CrossRef]
- Matveenko, S.; Pavlov, D.; Rabchinskii, M.; Senichenkov, V.; Solomatin, M.A.; Sysoev, V.V.; Varshavchik, L. Classification of Graphene-Based Electronic Nose Measurements with Gradient-Boosted Decision Trees. SSRN 5041771. Available online: http://ssrn.com/abstract=5041771 (accessed on 1 October 2024).
- Rabchinskii, M.K.; Shiyanova, K.A.; Brzhezinskaya, M.; Gudkov, M.V.; Saveliev, S.D.; Stolyarova, D.Y.; Melnikov, V.P. Chemistry of Reduced Graphene Oxide: Implications for the Electrophysical Properties of Segregated Graphene–Polymer Composites. Nanomaterials 2024, 14, 1664. [Google Scholar] [CrossRef]
- Farina, D.; Machrafi, H.; Queeckers, P.; Dongo, P.D.; Iorio, C.S. Innovative AI-Enhanced Ice Detection System Using Graphene-Based Sensors for Enhanced Aviation Safety and Efficiency. Nanomaterials 2024, 14, 1135. [Google Scholar] [CrossRef]
- Kuş, E.; Altındemir, G.; Bostan, Y.K.; Taşaltın, C.; Erol, A.; Wang, Y.; Sarcan, F. A Dual-Channel MoS2-Based Selective Gas Sensor for Volatile Organic Compounds. Nanomaterials 2024, 14, 633. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Sysoev, V.V.; Glukhova, O.E.; Brzhezinskaya, M.; Stolyarova, D.Y.; Varezhnikov, A.S.; Brunkov, P.N. Guiding Graphene Derivatization for the On-Chip Multisensor Arrays: From the Synthesis to the Theoretical Background. Adv. Mater. Technol. 2022, 7, 2101250. [Google Scholar] [CrossRef]
- Bai, S.; Tian, K.; Fu, H.; Feng, Y.; Luo, R.; Li, D.; Liu, C.C. Novel α-Fe2O3/BiVO4 heterojunctions for enhancing NO2 sensing properties. Sens. Actuators B Chem. 2018, 268, 136–143. [Google Scholar] [CrossRef]
- Golmojdeh, H.; Zanjanchi, M.A. Ethanol gas sensor based on pure and La-doped bismuth vanadate. J. Electron. Mater. 2014, 43, 528–534. [Google Scholar] [CrossRef]
- Guan, Y.; Ding, Y.; Fang, Y.; Wang, G.; Zhao, S.; Wang, L.; Yang, L. Femtosecond laser-driven phase engineering of WS2 for nano-periodic phase patterning and sub-ppm ammonia gas sensing. Small 2023, 19, 2303654. [Google Scholar] [CrossRef]
- Chowdhury, S.; Torad, N.L.; Godara, M.; El-Amir, A.A.; Gumilar, G.; Ashok, A.; Kaneti, Y.V. Hierarchical bimetallic metal-organic frameworks with controllable assembling sub-units and interior architectures for enhanced ammonia detection. Chem. Eng. J. 2024, 480, 147990. [Google Scholar] [CrossRef]
- Quan, W.; Shi, J.; Zeng, M.; Lv, W.; Chen, X.; Fan, C.; Yang, Z. Highly sensitive ammonia gas sensors at room temperature based on the catalytic mechanism of N, C coordinated Ni single-atom active center. Nano-Micro Lett. 2024, 16, 277. [Google Scholar] [CrossRef]
- Lu, Y.; Luo, Y.S.; Xiao, H.M.; Fu, S.Y. Novel core–shell structured BiVO4 hollow spheres with an ultra-high surface area as visible-light-driven catalyst. Cryst. Eng. Comm. 2014, 16, 6059–6065. [Google Scholar] [CrossRef]
- Ye, L.; Li, L.; Guo, L.; Fang, J.; Zhao, H.; Jiang, Y. Facile synthesis and photocatalytic performance of BiVO4 with controllable pumpkin-like microstructure. Mater. Lett. 2018, 211, 171–174. [Google Scholar] [CrossRef]
- Wang, S.; Chai, Y.; Yuan, R.; Liu, H. PEDOT/FeOOH/BiVO4 nanohybrids with excellent photoelectric performance promoted by photothermal effects for the ultrasensitive detection of microRNA-375-3p. Anal. Chem. 2023, 95, 4896–4903. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, Y.; Tian, H.; Ye, L.; Li, R.; Chen, C.; Huang, D. Fluorine-doped BiVO4 photocatalyst: Preferential cleavage of C− N bond for green degradation of glyphosate. J. Environ. Sci. 2023, 127, 60–68. [Google Scholar] [CrossRef]
- Patel, M.; Ghosh, S.; Kim, J. Co-sputtered Mo: BiVO4 thin film-based transparent photovoltaic and photoelectrochemical activity for see-through energy systems. Mater. Sci. Semicond. Process. 2023, 159, 107403. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Zeng, T.; Qiao, L.; Zhang, M.; Song, K.; Zhang, Y. Self-powered photoelectrochemical aptasensor based on hollow tubular g-C3N4/Bi/BiVO4 for tobramycin detection. Anal. Chim. Acta 2023, 1250, 340951. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Mishakov, I.V.; Bauman, Y.I.; Shubin, Y.V.; Maksimova, T.A.; Stoyanovskii, V.O.; Vedyagin, A.A. One-pot functionalization of catalytically derived carbon nanostructures with heteroatoms for toxic-free environment. Appl. Surf. Sci. 2022, 590, 153055. [Google Scholar] [CrossRef]
- Sobaszek, M.; Brzhezinskaya, M.; Olejnik, A.; Mortet, V.; Alam, M.; Sawczak, M.; Bogdanowicz, R. Highly Occupied Surface States at Deuterium-Grown Boron-Doped Diamond Interfaces for Efficient Photoelectrochemistry. Small 2023, 19, 2208265. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Binding energy referencing in X-ray photoelectron spectroscopy. Nat. Rev. Mater. 2024, 10, 62–67. [Google Scholar] [CrossRef]
- El Doukkali, M.; Paul, S.; Dumeignil, F. New insights in single-step hydrodeoxygenation of glycerol to propylene by coupling rational catalyst design with systematic analysis. Appl. Catal. B Environ. 2023, 324, 122280. [Google Scholar] [CrossRef]
- Pinder, J.W.; Major, G.H.; Baer, D.R.; Terry, J.; Whitten, J.E.; Čechal, J.; Linford, M.R. Avoiding common errors in X-ray photoelectron spectroscopy data collection and analysis, and properly reporting instrument parameters. Appl. Surf. Sci. Adv. 2024, 19, 100534. [Google Scholar] [CrossRef]
- Zarrouk, T.; Ibragimova, R.; Bartók, A.P.; Caro, M.A. Experiment-Driven Atomistic Materials Modeling: A Case Study Combining X-Ray Photoelectron Spectroscopy and Machine Learning Potentials to Infer the Structure of Oxygen-Rich Amorphous Carbon. J. Am. Chem. Soc. 2024, 146, 14645–14659. [Google Scholar] [CrossRef]
- Liu, J.; Li, B.; Kong, L.; Xiao, Q.; Huang, S. Surfactants-assisted morphological regulation of BiVO4 nanostructures for photocatalytic degradation of organic pollutants in wastewater. J. Phys. Chem. Solids 2023, 172, 111079. [Google Scholar] [CrossRef]
- Wang, D.; Song, C. Morphology-controlled synthesis of BiVO4 materials and their ethanol gas sensing properties. IEEE Access 2020, 8, 24941–24947. [Google Scholar] [CrossRef]
- Shi, Y.; Zhai, P.; Meng, L.; Huang, Z.; Li, G. Effects of Bi: V ratio and oxygen pressure on BiVO4 (010) epitaxial thin film preparation. Phys. B Condens. Matter 2021, 618, 413174. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.; Li, J.; Duan, Z.; Yang, Y.; Yuan, Z.; Tai, H. Pd-decorated ZnO hexagonal microdiscs for NH3 sensor. Chemosensors 2024, 12, 43. [Google Scholar] [CrossRef]
- Gayathri, K.; Ravichandran, K.; Sridharan, M.; Suvathi, S.; Sriram, S.; Mohan, R.; Santhosam, A.J.; Praseetha, P.K.; Sakthivel, P. Enhanced ammonia gas sensing by cost-effective SnO2 gas sensor: Influence of effective Mo doping. Mater. Sci. Eng. B 2023, 298, 116849. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, C.; Zhang, H.; Zhang, Y. Preparation and study of ammonia gas sensor based on ZnO/CuO heterojunction with high performance at room temperature. Mater. Sci. Semicond. Process. 2022, 146, 106700. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhan, G.; Peng, W.; Huang, C.; Chen, H.; Lin, S. Trace ppb-level NH3 sensor based on single petal-like Ce-doped SnO2. Mater. Sci. Semicond. Process. 2023, 157, 107335. [Google Scholar] [CrossRef]
- Wang, X.; Gong, L.; Li, Z.; Yin, Y.; Zhang, D. A room temperature ammonia gas sensor based on cerium oxide/MXene and self-powered by a freestanding-mode triboelectric nanogenerator and its multifunctional monitoring application. J. Mater. Chem. A 2023, 11, 7690–7701. [Google Scholar] [CrossRef]
- Islam, M.S.; Bhardwaj, A.; Mathur, L.; Kim, I.H.; Park, J.Y.; Song, S.J. Effects of electrolyte variation on ammonia sensing temperature for BiVO4 sensing electrode in mixed potential gas sensor. Sens. Actuators B Chem. 2022, 371, 132504. [Google Scholar] [CrossRef]
- Islam, M.S.; Mathur, L.; Namgung, Y.; Singh, B.; Park, J.Y.; Song, S.J. Tailoring the microstructure of BiVO4 sensing electrode by nanoparticle decoration and its effect on hazardous NH3 sensing. J. Hazard. Mater. 2023, 455, 131588. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Zheng, H.; Wu, C.; Wang, J.; Chen, T.; Lin, H. Synergistic Enhancement on the Sensing Performance of Mixed Potential NH3 Sensors by Fe and Mo Co doping into BiVO4. Langmuir 2024, 40, 16239–16248. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Meng, W.; He, Z.; Liu, H.; Dai, L.; Wang, L. The mixed-potential NH3 sensor using BiVO4/Bi4V2O11 heterojunction sensing electrode prepared by self-phase separation. Sens. Actuators B Chem. 2022, 373, 132765. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.S. Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 2019, 31, 1806938. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.W.; Dai, L.; Meng, W.; Zhou, H.Z.; Li, Y.H.; He, Z.X.; Wang, L. Mixed-potential type NH3 sensor based on TiO2 sensing electrode with a phase transformation effect. Sens. Actuators B Chem. 2017, 240, 962–970. [Google Scholar] [CrossRef]
- Meng, W.W.; Wang, L.; Li, Y.H.; Dai, L.; Zhu, J.; Zhou, H.Z.; He, Z.X. Enhanced sensing performance of mixed potential ammonia gas sensor based on Bi0.95Ni0.05VO3.975 by silver. Sens. Actuators B Chem. 2018, 259, 668–676. [Google Scholar] [CrossRef]
- Wang, L.; Meng, W.W.; He, Z.X.; Meng, W.; Li, Y.H.; Dai, L. Enhanced selective performance of mixed potential ammonia gas sensor by Au nanoparticles decorated CeVO4 sensing electrode. Sens. Actuators B Chem. 2018, 272, 219–228. [Google Scholar] [CrossRef]
Element | Atomic % |
---|---|
O | 77.1 |
Bi | 12.5 |
V | 10.4 |
Total | 100.00 |
Sample | SBET (m2/g) | Average Pore size (nm) | Pore Volume (cm3/g) |
---|---|---|---|
A2 (150 °C) | 2.84 | 17.76 | 0.026 |
A4 (170 °C) | 1.21 | 42.09 | 0.021 |
Material | Operating Temperature (°C) | Response Value | Response Time (s) | Recovery Time (s) | References |
---|---|---|---|---|---|
Pd-ZnO thin film | 230 | 3.9 | 23.2 | 271.8 | [43] |
Mo-SnO2 nanoparticles | 350 | 3.1 | 21 | 31 | [44] |
ZnO/CuO heterostructure | Room temperature | 4.5 | 2.3 | 2.1 | [45] |
Ce-doped SnO2 | Room temperature | 6.1 | 4.4 | 12.8 | [46] |
Square–star-shaped leaf-like BiVO4 | 300 | 13.3 | 28 | 16 | This research |
CeO2/MXene | Room temperature | 3.68 | 12 | 19 | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Yang, M.; Lv, Y.; Gao, Y.; Bai, D.; Li, N.; Guo, H.; Wang, A. Preparation and Gas-Sensitive Properties of Square–Star-Shaped Leaf-Like BiVO4 Nanomaterials. Nanomaterials 2025, 15, 127. https://doi.org/10.3390/nano15020127
Liu J, Yang M, Lv Y, Gao Y, Bai D, Li N, Guo H, Wang A. Preparation and Gas-Sensitive Properties of Square–Star-Shaped Leaf-Like BiVO4 Nanomaterials. Nanomaterials. 2025; 15(2):127. https://doi.org/10.3390/nano15020127
Chicago/Turabian StyleLiu, Jin, Mengdi Yang, Yuanyuan Lv, Yixin Gao, Danyang Bai, Neng Li, Haoru Guo, and Anyi Wang. 2025. "Preparation and Gas-Sensitive Properties of Square–Star-Shaped Leaf-Like BiVO4 Nanomaterials" Nanomaterials 15, no. 2: 127. https://doi.org/10.3390/nano15020127
APA StyleLiu, J., Yang, M., Lv, Y., Gao, Y., Bai, D., Li, N., Guo, H., & Wang, A. (2025). Preparation and Gas-Sensitive Properties of Square–Star-Shaped Leaf-Like BiVO4 Nanomaterials. Nanomaterials, 15(2), 127. https://doi.org/10.3390/nano15020127