Mid-Infrared High-Power InGaAsSb/AlGaInAsSb Multiple-Quantum-Well Laser Diodes Around 2.9 μm
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Active Region Design
3.2. Characterization of InGaAsSb/AlGaInAsSb MQW
3.3. Laser Design and Growth
3.4. Laser Output Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tittel, F.K.; Richter, D.; Fried, A. Mid-Infrared Laser Applications in Spectroscopy; Springer: Berlin, Germany; Heidelberg, Germany, 2003; pp. 458–529. [Google Scholar]
- Vizbaras, A.; Simonyte, I.; Droz, S.; Torcheboeuf, N.; Miasojedovas, A.; Trinkunas, A.; Buciunas, T.; Dambrauskas, Z.; Gulbinas, A.; Boiko, D.L.; et al. GaSb Swept-Wavelength Lasers for Biomedical Sensing Applications. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1501812. [Google Scholar] [CrossRef]
- Willer, U.; Saraji, M.; Khorsandi, A.; Geiser, P.; Schade, W. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt. Lasers Eng. 2006, 44, 699–710. [Google Scholar] [CrossRef]
- Norooz Oliaee, J.; Sabourin, N.A.; Festa-Bianchet, S.A.; Gupta, J.A.; Johnson, M.R.; Thomson, K.A.; Smallwood, G.J.; Lobo, P. Development of a Sub-ppb Resolution Methane Sensor Using a GaSb-Based DFB Diode Laser near 3270 nm for Fugitive Emission Measurement. ACS Sens. 2022, 7, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.A.; Xie, S.W.; Zhang, Y.; Shang, J.M.; Huang, S.S.; Yuan, Y.; Shao, F.H.; Zhang, Y.; Xu, Y.Q.; Niu, Z.C. High-power, high-spectral-purity GaSb-based laterally coupled distributed feedback lasers with metal gratings emitting at 2 μm. Appl. Phys. Lett. 2019, 114, 021102. [Google Scholar] [CrossRef]
- Chin, S.; Holzer, J.; Groote, A.D.; Martens, D.; Naujokaite, G.; Vizbaras, A.; Vizbaras, K.; Pache, C. Development of hybrid photonic integrated wavelength-tunable laser at 2 μm and its application to FMCW LiDAR. Opt. Express 2024, 32, 22470–22478. [Google Scholar] [CrossRef]
- Zou, K.; Pang, K.; Song, H.; Fan, J.; Zhao, Z.; Song, H.; Zhang, R.; Zhou, H.; Minoofar, A.; Liu, C.; et al. High-capacity free-space optical communications using wavelength- and mode-division-multiplexing in the mid-infrared region. Nat. Commun. 2022, 13, 7662. [Google Scholar] [CrossRef]
- Wagner, J.; Schulz, N.; Rösener, B.; Rattunde, M.; Yang, Q.; Fuchs, F.; Manz, C.; Bronner, W.; Mann, C.; Köhler, K.; et al. Infrared Semiconductor Lasers for DIRCM Applications; SPIE: Bremerhaven, WA, USA, 2008; Volume 7115. [Google Scholar]
- Wang, X.; Jiao, X.; Wang, B.; Liu, Y.; Xie, X.-P.; Zheng, M.-Y.; Zhang, Q.; Pan, J.-W. Quantum frequency conversion and single-photon detection with lithium niobate nanophotonic chips. NPJ Quantum Inf. 2023, 9, 38. [Google Scholar] [CrossRef]
- Zhu, C.; Wei, J.; Geng, Z.; Chen, Y.; Yang, C.; Niu, Z.; Wang, R.; Yu, S. GaSb-Si3N4 hybrid lasers with precise wavelength control and narrow spectral linewidth based on low-kappa Bragg gratings. Appl. Phys. Lett. 2024, 125, 151102. [Google Scholar] [CrossRef]
- Shi, J.; Yang, C.; Chen, Y.; Wang, T.; Yu, H.; Cao, J.; Geng, Z.; Wang, Z.; Wen, H.; Tan, H.; et al. Precise mode control of mid-infrared high-power laser diode using on-chip advanced sawtooth waveguide designs. High Power Laser Sci. Eng. 2024, 12, e42. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, C.; Wang, T.; Yu, H.; Shi, J.; Su, X.; Zhang, Y.; Zhao, Y.; Tong, C.; Wu, D.; et al. High-Power, High-Efficiency GaSb-Based Laser with Compositionally Linearly Graded AlGaAsSb Layer. Appl. Sci. 2023, 13, 5506. [Google Scholar] [CrossRef]
- Belenky, G.; Shterengas, L.; Kisin, M.V.; Hosoda, T. Gallium antimonide (GaSb)-based type-I quantum well diode lasers: Recent development and prospects. In Semiconductor Lasers; Baranov, A., Tournié, E., Eds.; Woodhead Publishing: Sawston, UK, 2013; pp. 441–486. [Google Scholar]
- Kim, J.G.; Shterengas, L.; Martinelli, R.U.; Belenky, G.L.; Garbuzov, D.Z.; Chan, W.K. Room-temperature 2.5 μm InGaAsSb/AlGaAsSb diode lasers emitting 1 W continuous waves. Appl. Phys. Lett. 2002, 81, 3146–3148. [Google Scholar] [CrossRef]
- Yu, H.; Yang, C.; Chen, Y.; Wang, T.; Shi, J.; Cao, J.; Geng, Z.; Wang, Z.; Zhang, Y.; Xu, Y.; et al. Watt-level continuous-wave antimonide laser diodes with high carrier-confined active region above 2.5 µm. Discov. Nano 2024, 19, 44. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Kipshidze, G.; Shterengas, L.; Hosoda, T.; Wang, Y.; Donetsky, D.; Belenky, G. 2.7μm GaSb-Based Diode Lasers with Quinary Waveguide. IEEE Photonics Technol. Lett. 2009, 21, 1112–1114. [Google Scholar] [CrossRef]
- Belenky, G.; Shterengas, L.; Kipshidze, G.; Hosoda, T. Type-I Diode Lasers for Spectral Region Above 3 μm. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1426–1434. [Google Scholar] [CrossRef]
- Eales, T.D.; Marko, I.P.; Adams, A.R.; Meyer, J.R.; Vurgaftman, I.; Sweeney, S.J. Quantifying Auger recombination coefficients in type-I mid-infrared InGaAsSb quantum well lasers. J. Phys. D Appl. Phys. 2021, 54, 055105. [Google Scholar] [CrossRef]
- Shterengas, L.; Belenky, G.L.; Kim, J.G.; Martinelli, R.U. Design of high-power room-temperature continuous-wave GaSb-based type-I quantum-well lasers with λ > 2.5 µm. Semicond. Sci. Technol. 2004, 19, 655. [Google Scholar] [CrossRef]
- Stringfellow, G.B. Miscibility gaps in quaternary III/V alloys. J. Cryst. Growth 1982, 58, 194–202. [Google Scholar] [CrossRef]
- Yildirim, A.; Prineas, J.P. Suppressed phase separation in thick GaInAsSb layers across the compositional range grown by molecular beam epitaxy for 1.7–4.9 μm infrared materials. J. Vac. Sci. Technol. B 2011, 30, 02B104. [Google Scholar] [CrossRef]
- Stringfellow, G.B. Immiscibility and spinodal decomposition in III/V alloys. J. Cryst. Growth 1983, 65, 454–462. [Google Scholar] [CrossRef]
- Vurgaftman, I.; Meyer, J.R.; Ram-Mohan, L.R. Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 2001, 89, 5815–5875. [Google Scholar] [CrossRef]
- Donati, G.P.; Kaspi, R.; Malloy, K.J. Interpolating semiconductor alloy parameters: Application to quaternary III–V band gaps. J. Appl. Phys. 2003, 94, 5814–5819. [Google Scholar] [CrossRef]
- Qiao, P.-F.; Mou, S.; Chuang, S.L. Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect. Opt. Express 2012, 20, 2319–2334. [Google Scholar] [CrossRef] [PubMed]
- Adachi, S. Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4-μm optoelectronic device applications. J. Appl. Phys. 1987, 61, 4869–4876. [Google Scholar] [CrossRef]
- Dier, O.; Dachs, S.; Grau, M.; Lin, C.; Lauer, C.; Amann, M.-C. Effects of thermal annealing on the band gap of GaInAsSb. Appl. Phys. Lett. 2005, 86, 151120. [Google Scholar] [CrossRef]
- Wang, Y.; Djie, H.S.; Ooi, B.S. Interdiffusion in InGaAsSb∕AlGaAsSb quantum wells. J. Appl. Phys. 2005, 98, 073508. [Google Scholar] [CrossRef]
- Bugge, R.; Fimland, B.-O. Annealing effects in InGaAsSb quantum wells with pentenary AlInGaAsSb barriers. Phys. Scr. 2006, T126, 15–20. [Google Scholar] [CrossRef]
- Ryczko, K.; Sęk, G.; Motyka, M.; Janiak, F.; Kubisa, M.; Misiewicz, J.; Belahsene, S.; Boissier, G.; Rouillard, Y. Effect of Annealing-Induced Interdiffusion on the Electronic Structure of Mid Infrared Emitting GaInAsSb/AlGaInAsSb Quantum Wells. Jpn. J. Appl. Phys. 2011, 50, 031202. [Google Scholar] [CrossRef]
- Stringfellow, G.B. Spinodal decomposition and clustering in III/V alloys. J. Electron. Mater. 1982, 11, 903–918. [Google Scholar] [CrossRef]
- Kuech, T.F.; Babcock, S.E.; Mawst, L. Growth far from equilibrium: Examples from III-V semiconductors. Appl. Phys. Rev. 2016, 3, 040801. [Google Scholar] [CrossRef]
- Yoo, Y.-S.; Roh, T.-M.; Na, J.-H.; Son, S.J.; Cho, Y.-H. Simple analysis method for determining internal quantum efficiency and relative recombination ratios in light emitting diodes. Appl. Phys. Lett. 2013, 102, 211107. [Google Scholar] [CrossRef]
- Muraki, K.; Fukatsu, S.; Shiraki, Y.; Ito, R. Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 1992, 61, 557–559. [Google Scholar] [CrossRef]
- Muraki, K.; Fukatsu, S.; Shiraki, Y.; Ito, R. Surface segregation of In atoms and its influence on the quantized levels in InGaAs/GaAs quantum wells. J. Cryst. Growth 1993, 127, 546–549. [Google Scholar] [CrossRef]
- Gajjela, R.S.R.; Hendriks, A.L.; Douglas, J.O.; Sala, E.M.; Steindl, P.; Klenovský, P.; Bagot, P.A.J.; Moody, M.P.; Bimberg, D.; Koenraad, P.M. Structural and compositional analysis of (InGa)(AsSb)/GaAs/GaP Stranski–Krastanov quantum dots. Light Sci. Appl. 2021, 10, 125. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Yang, C.; Chen, Y.; Shi, J.; Cao, J.; Geng, Z.; Wang, Z.; Wen, H.; Zhang, E.; Zhang, Y.; et al. Mid-Infrared High-Power InGaAsSb/AlGaInAsSb Multiple-Quantum-Well Laser Diodes Around 2.9 μm. Nanomaterials 2025, 15, 139. https://doi.org/10.3390/nano15020139
Yu H, Yang C, Chen Y, Shi J, Cao J, Geng Z, Wang Z, Wen H, Zhang E, Zhang Y, et al. Mid-Infrared High-Power InGaAsSb/AlGaInAsSb Multiple-Quantum-Well Laser Diodes Around 2.9 μm. Nanomaterials. 2025; 15(2):139. https://doi.org/10.3390/nano15020139
Chicago/Turabian StyleYu, Hongguang, Chengao Yang, Yihang Chen, Jianmei Shi, Juntian Cao, Zhengqi Geng, Zhiyuan Wang, Haoran Wen, Enquan Zhang, Yu Zhang, and et al. 2025. "Mid-Infrared High-Power InGaAsSb/AlGaInAsSb Multiple-Quantum-Well Laser Diodes Around 2.9 μm" Nanomaterials 15, no. 2: 139. https://doi.org/10.3390/nano15020139
APA StyleYu, H., Yang, C., Chen, Y., Shi, J., Cao, J., Geng, Z., Wang, Z., Wen, H., Zhang, E., Zhang, Y., Tan, H., Wu, D., Xu, Y., Ni, H., & Niu, Z. (2025). Mid-Infrared High-Power InGaAsSb/AlGaInAsSb Multiple-Quantum-Well Laser Diodes Around 2.9 μm. Nanomaterials, 15(2), 139. https://doi.org/10.3390/nano15020139