A Low-Cost Electrochemical Cell Sensor Based on MWCNT-COOH/α-Fe2O3 for Toxicity Detection of Drinking Water Disinfection Byproducts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Reagents
2.2. Preparation of MWCNT-COOH/α-Fe2O3/PGE
2.3. Construction and Condition Optimization of Electrochemical Sensor
2.4. Cytotoxicity Detection
3. Results and Discussion
3.1. Characterization of MWCNT-COOH/α-Fe2O3 Composite
3.2. Optimization of Preparation Conditions for MWCNT-COOH/α-Fe2O3/PGE
3.3. Construction of Cell Electrochemical Sensor Based on MWCNT-COOH/α-Fe2O3/PGE
3.4. Evaluation of the Toxicity of DBPs on HepG2 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Chen, L.; Yang, M.; Tan, C.; Chu, W. The occurrence, characteristics, transformation and control of aromatic disinfection by-products: A review. Water Res. 2020, 184, 116076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, Q.; Huang, C.; Yang, M.; Li, J.; Chen, Y.; Yang, B.; Zhao, X. Comparative cytotoxicity of halogenated aromatic DBPs and implications of the corresponding developed QSAR model to toxicity mechanisms of those DBPs: Binding interactions between aromatic DBPs and catalase play an important role. Water Res. 2020, 170, 115283. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Luo, J.; Wei, W.; Song, M.; Shi, W.; Li, A.; Zhou, Q.; Pan, Y. Comparative cytotoxicity analyses of disinfection byproducts in drinking water using dimensionless parameter scaling method: Effect of halogen substitution type and number. Water Res. 2023, 240, 120087. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Qiang, Z.; Richardson, S.D. Formation of iodinated disinfection byproducts (I-DBPs) in drinking water: Emerging concerns and current issues. Accounts Chem. Res. 2019, 52, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.D.; Plewa, M.J. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review. J. Environ. Sci. 2017, 58, 64–76. [Google Scholar] [CrossRef]
- Zhang, D.; Bond, T.; Li, M.; Dong, S.; Pan, Y.; Du, E.; Xiao, R.; Chu, W. Ozonation treatment increases chlorophenylacetonitrile formation in downstream chlorination or chloramination. Environ. Sci. Technol. 2021, 55, 3747–3755. [Google Scholar] [CrossRef]
- Zhang, D.; Chu, W.; Yu, Y.; Krasner, S.W.; Pan, Y.; Shi, J.; Yin, D.; Gao, N. Occurrence and stability of chlorophenylacetonitriles: A new class of nitrogenous aromatic DBPs in chlorinated and chloraminated drinking waters. Environ. Sci. Technol. Lett. 2018, 5, 394–399. [Google Scholar] [CrossRef]
- Zhang, D.; Bond, T.; Krasner, W.S.; Chu, W.; Pan, Y.; Xu, B.; Yin, D. Trace determination and occurrence of eight chlorophenylacetonitriles: An emerging class of aromatic nitrogenous disinfection byproducts in drinking water. Chemosphere 2018, 220, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhang, Y.; Wang, J.; Liu, W.; Wang, H.; Song, M.; Zhang, H.; Wang, X. In situ monitoring of toxic effects of algal toxin on cells by a novel microfluidic flow cytometry instrument. Ecotox. Environ. Safe 2024, 270, 115894. [Google Scholar] [CrossRef]
- Bhatt, B.S.; Gandhi, D.H.; Vaidya, F.U.; Pathak, C.; Patel, T.N. Cell apoptosis induced by ciprofloxacin based Cu(II) complexes: Cytotoxicity, SOD mimic and antibacterial studies. J. Biomol. Struct. Dyn. 2020, 39, 4555–4562. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Fu, G.; Wang, J.; Ge, L.; Zhu, J.; Yuan, X.; Liu, J. Voltammetric behavior of the heat-treating PC-3 cells and its application in drug sensitivity test. Electrochem. Commun. 2011, 13, 623–626. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, H.; Zhang, Z.; Liu, Y.; Qu, J.; Zhu, X. Cytotoxicity assessment of nanoplastics and associated additives using an electrochemical sensor based on carbon nanohorn/gold nanoparticles. J. Environ. Chem. Eng. 2023, 11, 111452. [Google Scholar] [CrossRef]
- Zhou, S.; Xing, Y.; Yuan, X.; Wu, G.; Zhu, X.; Wu, D. Cytotoxicity and action mechanisms of polycyclic aromatic hydrocarbons by a miniature electrochemical detection system. Biomed. Microdevices 2021, 23, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zheng, H.; Zhang, Z.; Ma, S.; Feng, Q.; Wang, J.; Wu, G.; Ng, H.Y. Cytotoxicity evaluation of organophosphorus flame retardants using electrochemical biosensors and elucidation of associated toxic mechanisms. Water Res. 2024, 265, 122262. [Google Scholar] [CrossRef]
- Özcan, A.; Şahin, Y. A novel approach for the selective determination of tryptophan in blood serum in the presence of tyrosine based on the electrochemical reduction of oxidation product of tryptophan formed in situ on graphite electrode. Biosens. Bioelectron. 2012, 31, 26–31. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, G.; Lu, N.; Yuan, X.; Li, B. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants. J. Hazard. Mater. 2017, 324, 272–280. [Google Scholar] [CrossRef]
- Domínguez, A.A.; Dominguez, R.B.; Zaragoza, C.E.A. Simultaneous detection of dihydroxybenzene isomers using electrochemically reduced graphene oxide-carboxylated carbon nanotubes/gold nanoparticles nanocomposite. Biosensors 2021, 11, 321. [Google Scholar] [CrossRef] [PubMed]
- Indah, W.N.; Tawatchai, K.; Rodtichoti, W.; Proespichaya, K.; Panote, T.; Warakorn, L. Electrochemical sensor based on molecularly imprinted polymer cryogel and multiwalled carbon nanotubes for direct insulin detection. Talanta 2023, 254, 124137. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Q.; Li, J.; Cui, J.; Zhou, S.; Hao, S.; Wu, D. A mini-electrochemical system integrated micropipet tip and pencil graphite electrode for detection of anticancer drug sensitivity in vitro. Biosens. Bioelectron. 2015, 64, 594–596. [Google Scholar] [CrossRef] [PubMed]
- Juthi, A.; Mohammad, R.; Lynn, D.; Uddin, A.M. Electrochemiluminescence nanoimmunosensor for CD63 protein using a carbon nanochips/iron oxide/nafion-nanocomposite modified mesoporous carbon interface. Measurement 2020, 170, 108755. [Google Scholar] [CrossRef]
- Wang, F.; Yang, J.; Li, S.; Liang, J.; Wang, Y.; Du, R.; Zhou, B.; Liu, Q.; Li, C. Constructing ultralow-loading Cu single atoms/Fe2O3 particles on Nb2C MXenes for efficient utilization of atomic H to boost electrochemical debromination. Chem. Eng. J. 2024, 498, 155550. [Google Scholar] [CrossRef]
- Sawczuk, R.B.S.; Pinheiro, H.A.; Santos, J.R.N.; Alves, I.C.B.; Viegas, H.D.C.; Lacerda, C.A.; Sousa, J.K.C.; Marques, E.P.; Marques, A.L.B. A sensitive electrochemical nanosensor based on iron oxide nanoparticles and multiwalled carbon nanotubes for simultaneous determination of benzoquinone and catechol in groundwater. Int. J. Environ. Anal. Chem. 2023, 103, 1733–1750. [Google Scholar] [CrossRef]
- Abdel-Haleem, F.M.; Gamal, E.; Rizk, M.S.; Madbouly, A.; El Nashar, R.M.; Anis, B.; Elnabawy, H.M.; Khalil, A.S.G.; Barhoum, A. Molecularly imprinted electrochemical sensor-based Fe2O3@MWCNTs for ivabradine drug determination in pharmaceutical formulation, serum, and urine samples. Front. Bioeng. Biotechnol. 2021, 9, 648704. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Zheng, H.; Wang, C.; Zhang, Z.; Qian, Y.; Qu, J.; Zhu, X. Cost-efficient and ultrasensitive sensor for electrochemical detection and cytotoxicity assessment of tetracyclines. J. Environ. Chem. Eng. 2024, 12, 113642. [Google Scholar] [CrossRef]
- Cao, T.T.; Phan, N.D.D.; Pham, V.T.; Nguyen, T.H.; Nguyen, V.T.; Cao, T.A.; Pham, V.H.; Kanako, Y.; Hiroya, A.; Nguyen, V.C. 3D porous graphene/double-walled carbon nanotubes/gold nanoparticles hybrid film for modifying electrochemical electrode. Mater. Lett. 2023, 330, 133308. [Google Scholar] [CrossRef]
- Patta, S.; Suryasnata, T.; Rama, K.V.S.; Govind, S.S. Label-free, ultrasensitive and rapid detection of FDA-approved TBI specific UCHL1 biomarker in plasma using MWCNT-PPY nanocomposite as bio-electrical transducer: A step closer to point-of-care diagnosis of TBI. Biosens. Bioelectron. 2022, 216, 114631. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, H.; Liu, Y.; Ma, S.; Feng, Q.; Qu, J.; Zhu, X. Highly sensitive detection of multiple antiviral drugs using graphitized hydroxylated multi-walled carbon nanotubes/ionic liquids-based electrochemical sensors. Environ. Res. 2024, 249, 118466. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.; Tripta; Ankita; Kumar, S.; Kumar, R.; Kumar, V.; Kumar, A.; Singh, O.; Kumar, P. Efficient α–Fe2O3@NiO nanocomposites as a photocatalyst for the treatment of hazardous Rose Bengal dye. Phys. Rev. B Condens. 2025, 696, 416649. [Google Scholar] [CrossRef]
- Solhy, A.; Machado, B.F.; Beausoleil, J.; Kihn, Y.; Gonçalves, F.; Pereira, M.F.R.; Órfão, J.J.M.; Figueiredo, J.L.; Faria, J.L.; Serp, P. MWCNT activation and its influence on the catalytic performance of Pt/MWCNT catalysts for selective hydrogenation. Carbon 2008, 46, 1194–1207. [Google Scholar] [CrossRef]
- Shaqayeq, A.; Hamid, M. Removal of carboxylated multi-walled carbon nanotubes (MWCNT-COOH) from the environment by Trametes versicolor: A simple, cost-effective, and eco-friendly method. Sci. Rep. 2023, 13, 16139. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, H.; Saini, C.; Gupta, A.; Pandit, V. Exploring the collaborative wonders of Al2O3-Mn3O4-Fe2O3 nanoparticles embedded in reduced graphene oxide matrices. Inorg. Chem. Commun. 2024, 162, 112275. [Google Scholar] [CrossRef]
- Ghaffar, S.; Ahmed, A.; Jamshaid, M.; Al-onazi, W.A.; Ali, M.A.; Iqbal, A.; Iqbal, R. Construction of visible-light-induced Fe2O3/g-C3N4 nanocomposites for the enhanced degradation of organic dyes: Optimization of operative parameters. Polyhedron 2024, 264, 117254. [Google Scholar] [CrossRef]
- Klaunig, J.E.; Kamendulis, L.M.; Hocevar, B.A. Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol. 2010, 38, 96–109. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Ai, H.; Chen, Y.; Zhang, Z.; Zeng, P.; Kang, L.; Li, W.; Gu, W.; He, Q.; Li, H. Phytoplankton response to polystyrene microplastics: Perspective from an entire growth period. Chemosphere 2018, 208, 59–68. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Zhang, H.; Le, X.C.; Li, X.-F. Glutathione-mediated detoxification of halobenzoquinone drinking water disinfection byproducts in T24 cells. Toxicol. Sci. 2014, 141, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Qian, Y.; Li, J.; Aljuhani, N.; Siraki, A.G.; Le, X.C.; Li, X. Characterization of mechanisms of glutathione conjugation with halobenzoquinones in solution and HepG2 cells. Environ. Sci. Technol. 2018, 52, 2898–2908. [Google Scholar] [CrossRef]
- Subramanian, K.; Iovino, F.; Tsikourkitoudi, V.; Merkl, P.; Ahmed, S.; Berry, S.B.; Aschtgen, M.S.; Svensson, M.; Bergman, P.; Sotiriou, G.A.; et al. Mannose receptor-derived peptides neutralize pore-forming toxins and reduce inflammation and development of pneumococcal disease. Embo Mol. Med. 2020, 12, 12695. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Moe, B.; Vemula, S.; Wang, W.; Li, F. Emerging disinfection byproducts, halobenzoquinones: Effects of isomeric structure and halogen substitution on cytotoxicity, formation of reactive oxygen species, and genotoxicity. Environ. Sci. Technol. 2016, 50, 6744–6752. [Google Scholar] [CrossRef] [PubMed]
- Tu, N.; Liu, H.; Li, W.; Yao, S.; Liu, J.; Guo, Z.; Yu, R.; Du, H.; Li, J. Quantitative structure-toxicity relationships of halobenzoquinone isomers on DNA reactivity and genotoxicity. Chemosphere 2022, 309, 136763. [Google Scholar] [CrossRef] [PubMed]
Toxicant | Signal | IC50 |
---|---|---|
2-CPAN | Y = 35.61 X − 55.43 (r = 0.976) | 660.69 µM |
3-CPAN | Y = 31.58 X − 39.88 (r = 0.962) | 831.76 µM |
4-CPAN | Y = 36.90 X − 61.61 (r = 0.916) | 812.83 µM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, Z.; Wu, Y.; Yang, H.; Qu, J.; Zhu, X. A Low-Cost Electrochemical Cell Sensor Based on MWCNT-COOH/α-Fe2O3 for Toxicity Detection of Drinking Water Disinfection Byproducts. Nanomaterials 2025, 15, 146. https://doi.org/10.3390/nano15020146
Liu Y, Zhang Z, Wu Y, Yang H, Qu J, Zhu X. A Low-Cost Electrochemical Cell Sensor Based on MWCNT-COOH/α-Fe2O3 for Toxicity Detection of Drinking Water Disinfection Byproducts. Nanomaterials. 2025; 15(2):146. https://doi.org/10.3390/nano15020146
Chicago/Turabian StyleLiu, Ying, Zhipeng Zhang, Yuling Wu, Huan Yang, Jiao Qu, and Xiaolin Zhu. 2025. "A Low-Cost Electrochemical Cell Sensor Based on MWCNT-COOH/α-Fe2O3 for Toxicity Detection of Drinking Water Disinfection Byproducts" Nanomaterials 15, no. 2: 146. https://doi.org/10.3390/nano15020146
APA StyleLiu, Y., Zhang, Z., Wu, Y., Yang, H., Qu, J., & Zhu, X. (2025). A Low-Cost Electrochemical Cell Sensor Based on MWCNT-COOH/α-Fe2O3 for Toxicity Detection of Drinking Water Disinfection Byproducts. Nanomaterials, 15(2), 146. https://doi.org/10.3390/nano15020146