Anisotropic Elasticity, Spin–Orbit Coupling, and Topological Properties of ZrTe2 and NiTe2: A Comparative Study for Spintronic and Nanoscale Applications
Abstract
:1. Introduction
2. Methodology
3. Result and Discussion
3.1. Structural Properties
Compound | a [Å] | c [Å] | c/a | V0 [Å3] | B [GPa] |
---|---|---|---|---|---|
ZrTe2 | 3.97 | 7.03 | 1.77 | 86.69 | 16.46 |
Exp. | 3.94 a | 6.62 a | 1.68 a | 89.27 a | — |
Others | 3.90 a | 6.74 a | 1.72 a | 89.31 a | 21.90 b |
NiTe2 | 3.89 | 5.31 | 1.36 | 66.10 | 76.64 |
Exp. | 3.85 c | 5.26 c | 1.37 | 69.03 e | 53.30 f |
Others | 3.79 d | 5.93 d | 1.56 | 73.98 d | 224.6 d |
3.2. Elastic Properties
3.3. Electronic Band Structure and Topological Phase
4. Conclusions
- We revealed significant anisotropy in the orientation-dependent mechanical properties of both compounds, with NiTe2 exhibiting more pronounced variations and generally higher values for Young’s modulus, Poisson’s ratio, and shear modulus compared to ZrTe2.
- Using the TB-mBJ method, we confirmed the type-II Dirac semimetal nature of both materials, observing distinct band inversion characteristics: ZrTe2 showed inversion between Zr d and Te p states at the Γ point, while NiTe2 exhibited band inversion along the Γ-A symmetry direction near the Fermi energy.
- Our analysis demonstrated the crucial role of spin–orbit coupling in enhancing the topological features of these materials, particularly in accentuating the band inversions.
- Phonon dispersion calculations confirmed the dynamic stability of both ZrTe2 and NiTe2, an essential consideration in their potential applications.
- By comparing ZrTe2 and NiTe2 side by side, we highlighted key differences in their mechanical and electronic properties, providing valuable insights for use in material selection in various applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Wu, S.; Buckley, S.; Schaibley, J.R.; Feng, L.; Yan, J.; Mandrus, D.G.; Hatami, F.; Yao, W.; Vučković, J.; Majumdar, A. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 2015, 520, 69–72. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef]
- Yan, B.; Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys. 2017, 8, 337–354. [Google Scholar] [CrossRef]
- Armitage, N.; Mele, E.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001. [Google Scholar] [CrossRef]
- Zhang, J.-F.; Zhao, Y.; Liu, K.; Liu, Y.; Lu, Z.-Y. First-principles study of the crystal structure, electronic structure, and transport properties of NiTe 2 under pressure. Phys. Rev. B 2021, 104, 035111. [Google Scholar] [CrossRef]
- Mahamudujjaman, M.; Afzal, M.A.; Islam, R.; Naqib, S. First-principles insights into mechanical, optoelectronic, and thermo-physical properties of transition metal dichalcogenides ZrX2 (X = S, Se, and Te). AIP Adv. 2022, 12, 025011. [Google Scholar] [CrossRef]
- Chia, X.; Sofer, Z.; Luxa, J.; Pumera, M. Unconventionally layered CoTe2 and NiTe2 as electrocatalysts for hydrogen evolution. Chem. A Eur. J. 2017, 23, 11719–11726. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Jiao, W.; Zhou, W.; Qian, B.; Sankar, R.; Zhigadlo, N.D.; Qi, Y.; Qian, D.; Chou, F.-C. Topological type-II Dirac fermions approaching the Fermi level in a transition metal dichalcogenide NiTe2. Chem. Mater. 2018, 30, 4823–4830. [Google Scholar] [CrossRef]
- Ghosh, B.; Mondal, D.; Kuo, C.-N.; Lue, C.S.; Nayak, J.; Fujii, J.; Vobornik, I.; Politano, A.; Agarwal, A. Observation of bulk states and spin-polarized topological surface states in transition metal dichalcogenide Dirac semimetal candidate NiTe2. Phys. Rev. B 2019, 100, 195134. [Google Scholar] [CrossRef]
- Ganose, A.M.; Gannon, L.; Fabrizi, F.; Nowell, H.; Barnett, S.A.; Lei, H.; Zhu, X.; Petrovic, C.; Scanlon, D.O.; Hoesch, M. Local corrugation and persistent charge density wave in ZrTe3 with Ni intercalation. Phys. Rev. B 2018, 97, 155103. [Google Scholar] [CrossRef]
- Okada, S.; Sambongi, T.; Ido, M. Giant resistivity anomaly in ZrTe5. J. Phys. Soc. Jpn. 1980, 49, 839–840. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Guo, C.; Zhu, X.; Zhang, Y.; Yang, J.; Wang, Y.; Qu, Z.; Pi, L.; Lu, H.-Z. Anomalous thermoelectric effects of ZrTe5 in and beyond the quantum limit. Phys. Rev. Lett. 2019, 123, 196602. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xie, Q.; Ullah, S.; Li, R.; Ma, H.; Li, D.; Li, Y.; Chen, X.-Q. Coexistent three-component and two-component Weyl phonons in TiS, ZrSe, and HfTe. Phys. Rev. B 2018, 97, 054305. [Google Scholar] [CrossRef]
- Kar, I.; Chatterjee, J.; Harnagea, L.; Kushnirenko, Y.; Fedorov, A.; Shrivastava, D.; Büchner, B.; Mahadevan, P.; Thirupathaiah, S. Metal-chalcogen bond-length induced electronic phase transition from semiconductor to topological semimetal in ZrX2 (X = Se and Te). Phys. Rev. B 2020, 101, 165122. [Google Scholar] [CrossRef]
- Mattheiss, L.F. Band structures of transition-metal-dichalcogenide layer compounds. Phys. Rev. B 1973, 8, 3719. [Google Scholar] [CrossRef]
- Correa, L.E.; Ferreira, P.P.; de Faria, L.R.; Fim, V.M.; da Luz, M.S.; Torikachvili, M.S.; Heil, C.; Eleno, L.T.; Machado, A.J. Superconductivity in Te-Deficient ZrTe2. J. Phys. Chem. C 2023, 127, 5162–5168. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Chan, Y.-h.; Wang, Y.; Zhang, H.; Jinxu, P.; Cui, S.; Yang, Y.; Liu, Z.; Shen, D.; Sun, Z. Evidence of high-temperature exciton condensation in a two-dimensional semimetal. Nat. Commun. 2023, 14, 994. [Google Scholar] [CrossRef] [PubMed]
- Tsipas, P.; Tsoutsou, D.; Fragkos, S.; Sant, R.; Alvarez, C.; Okuno, H.; Renaud, G.; Alcotte, R.; Baron, T.; Dimoulas, A. Massless dirac fermions in ZrTe2 semimetal grown on InAs (111) by van der Waals epitaxy. ACS Nano 2018, 12, 1696–1703. [Google Scholar] [CrossRef]
- Zheng, G.; Lu, J.; Zhu, X.; Ning, W.; Han, Y.; Zhang, H.; Zhang, J.; Xi, C.; Yang, J.; Du, H. Transport evidence for the three-dimensional Dirac semimetal phase in ZrTe5. Phys. Rev. B 2016, 93, 115414. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, N.; Roychowdhury, S.; Shekhar, C.; Felser, C. Anisotropic large diamagnetism in Dirac semimetals ZrTe5 and HfTe5. J. Phys. Condens. Matter 2022, 34, 225802. [Google Scholar] [CrossRef]
- Fragkos, S.; Tsipas, P.; Xenogiannopoulou, E.; Panayiotatos, Y.; Dimoulas, A. Type-III Dirac fermions in HfxZr1−xTe2 topological semimetal candidate. J. Appl. Phys. 2021, 129, 075104. [Google Scholar] [CrossRef]
- Khang, N.H.D.; Ueda, Y.; Hai, P.N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 2018, 17, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ramaswamy, R.; Yang, H. FMR-related phenomena in spintronic devices. J. Phys. D Appl. Phys. 2018, 51, 273002. [Google Scholar] [CrossRef]
- Vergniory, M.; Elcoro, L.; Felser, C.; Regnault, N.; Bernevig, B.A.; Wang, Z. A complete catalogue of high-quality topological materials. Nature 2019, 566, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Bradlyn, B.; Elcoro, L.; Cano, J.; Vergniory, M.G.; Wang, Z.; Felser, C.; Aroyo, M.I.; Bernevig, B.A. Topological quantum chemistry. Nature 2017, 547, 298–305. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, Y.; Si, K.; Ren, Z.; Bai, J.; Xu, X. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidi B 2017, 254, 1700033. [Google Scholar] [CrossRef]
- Jiang, H. Structural and electronic properties of ZrX2 and HfX2 (X = S and Se) from first principles calculations. J. Chem. Phys. 2011, 134, 204705. [Google Scholar] [CrossRef]
- Fazeli, Y.; Etesami, Z.; Nourbakhsh, Z.; Vashaee, D. Unveiling the properties of transition-metal dichalcogenides: A comprehensive study of WTe2, WSe2, ZrTe2, and NiTe2 in bulk and monolayer forms. J. Mater. Sci. 2023, 58, 10023–10042. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.; Bilal, M.; Ahmad, I.; Jalali-Asadabadi, S. IRelast package. J. Alloys Compd. 2018, 735, 569–579. [Google Scholar] [CrossRef]
- Yalameha, S.; Nourbakhsh, Z.; Vashaee, D. ElATools: A tool for analyzing anisotropic elastic properties of the 2D and 3D materials. Comput. Phys. Commun. 2022, 271, 108195. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Delphine, S.M.; Jayachandran, M.; Sanjeeviraja, C. Pulsed electrodeposition and characterisation of tungsten diselenide thin films. Mater. Chem. Phys. 2003, 81, 78–83. [Google Scholar] [CrossRef]
- Lee, C.H. Tungsten Ditelluride (WTe2): An Atomic Layered Semimetal. Master’s Thesis, The Pennsylvania State University, University Park, PA, USA, 2015. [Google Scholar]
- Saminu, M.; Saleh, S.I.; Musa, S.I.; Ahmed, G.; Idris, M. First-principles Investigation of Structure and Electronic Properties of NiTe2 Fermi Crossing Type-II Dirac Semimetal. Asian J. Res. Rev. Phys. 2021, 4, 27–33. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Qi, M.; An, C.; Zhou, Y.; Wu, H.; Zhang, B.; Chen, C.; Yuan, Y.; Wang, S.; Zhou, Y.; Chen, X. Pressure-driven Lifshitz transition in type-II Dirac semimetal NiTe2. Phys. Rev. B 2020, 101, 115124. [Google Scholar] [CrossRef]
- Bastos, C.M.; Besse, R.; Da Silva, J.L.; Sipahi, G.M. Ab initio investigation of structural stability and exfoliation energies in transition metal dichalcogenides based on Ti-, V-, and Mo-group elements. Phys. Rev. Mater. 2019, 3, 044002. [Google Scholar] [CrossRef]
- Ferreira, P.P.; Manesco, A.L.; Dorini, T.T.; Correa, L.E.; Weber, G.; Machado, A.J.; Eleno, L.T. Strain engineering the topological type-II Dirac semimetal NiTe2. Phys. Rev. B 2021, 103, 125134. [Google Scholar] [CrossRef]
- Sato, M.; Abe, K. Acoustic phonon dispersion in NiTe2. J. Phys. C Solid State Phys. 1979, 12, L613. [Google Scholar] [CrossRef]
- Lei, J.-Q.; Liu, K.; Huang, S.; Mao, X.-C.; Hou, B.-S.; Tan, J.; Zhou, X.-L. Theoretical study of isostructural compounds MTe2 (M = Ni, Pd and Pt) on structure and thermodynamic properties under high pressures. Chem. Phys. Lett. 2017, 687, 250–257. [Google Scholar] [CrossRef]
- Feng, L.-P.; Li, N.; Yang, M.-H.; Liu, Z.-T. Effect of pressure on elastic, mechanical and electronic properties of WSe2: A first-principles study. Mater. Res. Bull. 2014, 50, 503–508. [Google Scholar] [CrossRef]
- Pugh, S. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Greaves, G.N.; Greer, A.L.; Lakes, R.S.; Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 2011, 10, 823–837. [Google Scholar] [CrossRef] [PubMed]
- Anderson, O.L.; Demarest, H.H., Jr. Elastic constants of the central force model for cubic structures: Polycrystalline aggregates and instabilities. J. Geophys. Res. 1971, 76, 1349–1369. [Google Scholar] [CrossRef]
- Zhang, Y. A comparison study of the structural, electronic, elastic, dielectric and dynamical properties of Zr-based monolayer dioxides (ZrO2) and dichalcogenides (ZrX2; X = S, Se or Te) as well as their Janus structures (ZrXY; X, Y = O, S, Se or Te, Y ≠ X). Phys. E Low-Dimens. Syst. Nanostruct. 2021, 134, 114855. [Google Scholar] [CrossRef]
- Ku, R.; Yan, L.; Xue, K.; Zhang, J.; Pang, K.; Sha, M.; Wang, B.-T.; Jiang, Y.; Zhou, L.; Li, W. NiX2 (X = S, Se, and Te) monolayers: Promising anodes in Li/Na-ion batteries and superconductors. J. Phys. Chem. C 2022, 126, 6925–6933. [Google Scholar] [CrossRef]
- Gabrelian, B.; Lavrentyev, A.; Vu, T.V.; Kalmykova, K.; Ananchenko, L.; Tkach, V.; Parasyuk, O.; Khyzhun, O. Valence-band electronic structure and main optical properties of Cu2HgGeTe4: Theoretical simulation within a DFT framework and experimental XPS study. Mater. Today Commun. 2020, 23, 100828. [Google Scholar] [CrossRef]
- Esin, V.D.; Shvetsov, O.O.; Timonina, A.V.; Kolesnikov, N.N.; Deviatov, E.V. Interface Superconductivity in a Dirac Semimetal NiTe2. Nanomaterials 2022, 12, 4114. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, G. The superconductivity and topological surface state of type-II Dirac semimetal NiTe2. J. Phys. Condens. Matter 2020, 32, 205702. [Google Scholar] [CrossRef]
- de Lima, B.; de Cassia, R.; Santos, F.; Correa, L.; Grant, T.; Manesco, A.; Martins, G.; Eleno, L.; Torikachvili, M.; Machado, A. Properties and superconductivity in Ti-doped NiTe2 single crystals. Solid State Commun. 2018, 283, 27–31. [Google Scholar] [CrossRef]
- Wen, X.; Lei, W.; Li, X.; Di, B.; Zhou, Y.; Zhang, J.; Zhang, Y.; Li, L.; Chang, H.; Zhang, W. ZrTe2 Compound Dirac Semimetal Contacts for High-Performance MoS2 Transistors. Nano Lett. 2023, 23, 8419–8425. [Google Scholar] [CrossRef]
- Ou, Y.; Yanez, W.; Xiao, R.; Stanley, M.; Ghosh, S.; Zheng, B.; Jiang, W.; Huang, Y.-S.; Pillsbury, T.; Richardella, A. ZrTe2/CrTe2: An epitaxial van der Waals platform for spintronics. Nat. Commun. 2022, 13, 2972. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chan, C.H.; Suen, C.H.; Lau, S.P.; Dai, J.-Y. Magnetotransport properties of layered topological material ZrTe2 thin film. ACS Nano 2019, 13, 6008–6016. [Google Scholar] [CrossRef]
- Yalameha, S.; Nourbakhsh, Z.; Ramazani, A.; Vashaee, D. Promising bialkali bismuthides Cs(Na, K)2Bi for high-performance nanoscale electromechanical devices: Prediction of mechanical and anisotropic elastic properties under hydrostatic tension and compression and tunable auxetic properties. Nanomaterials 2021, 11, 2739. [Google Scholar] [CrossRef] [PubMed]
- Mouhat, F.; Coudert, F.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik: (Mit Ausschluss der Kristalloptik); BG Teubner: Leipzig, Germany, 1910; Volume 34. [Google Scholar]
- Pham, D.C. Asymptotic estimates on uncertainty of the elastic moduli of completely random trigonal polycrystals. Int. J. Solids Struct. 2003, 40, 4911–4924. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, W.-B.; Tang, B.-Y. Electronic structures and elastic properties of monolayer and bilayer transition metal dichalcogenides MX2 (M = Mo, W; X = O, S, Se, Te): A comparative first-principles study. Chin. Phys. B 2015, 24, 097103. [Google Scholar] [CrossRef]
Compound | C11 [GPa] | C12 [GPa] | C13 [GPa] | C14 [GPa] | C33 [GPa] | C44 [GPa] | Ref. |
---|---|---|---|---|---|---|---|
ZrTe2 | 68.00 | 13.60 | 6.30 | −1.30 | 31.30 | 8.40 | This work (mBj) |
62.397 | 10.95 | 2.613 | −1.779 | 11.742 | 6.735 | This work (GGA) | |
67.65 | 12.95 | 8.07 | 1.07 | 32.30 | 6.94 | [8] | |
69.00 | — | — | — | 26.00 | 31.00 | [41] | |
NiTe2 | 121.40 | 39.27 | 42.82 | −7.50 | 72.20 | 16.92 | This work (mBj) |
112.735 | 41.583 | 26.675 | −5.498 | 50.948 | 16.391 | This work (GGA) | |
113.7 | 36.60 | 27.20 | −6.50 | 45.70 | 11.20 | [42] | |
109.50 | 41.90 | — | −10.70 | 52.60 | 20.40 | [43] | |
147.60 | 50.80 | 44.10 | 7.91 | 83.90 | 17.58 | [44] |
Compound | BV [GPa] | BR [GPa] | B [GPa] | GV [GPa] | GR [GPa] | G [GPa] | E [GPa] | B/G | ν | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
ZrTe2 | 24.41 | 20.79 | 22.60 | 18.21 | 13.45 | 15.83 | 38.50 | 1.43 | 0.22 | This work (mBj) |
18.76 | 9.81 | 14.29 | 15.86 | 9.72 | 12.79 | 29.55 | 1.12 | 0.16 | This work (GGA) | |
25.09 | 21.90 | 23.49 | 17.47 | 11.78 | 14.62 | 36.34 | 1.60 | 0.24 | [8] | |
NiTe2 | 62.76 | 59.22 | 60.99 | 27.65 | 27.98 | 27.81 | 56.37 | 2.19 | 0.30 | This work (mBj) |
51.81 | 43.07 | 47.44 | 25.77 | 21.16 | 23.47 | 60.43 | 2.02 | 0.29 | This work (GGA) | |
— | — | 70.12 | — | — | 28.75 | 5.095 | 2.439 | 0.3196 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazeli, Y.; Nourbakhsh, Z.; Yalameha, S.; Vashaee, D. Anisotropic Elasticity, Spin–Orbit Coupling, and Topological Properties of ZrTe2 and NiTe2: A Comparative Study for Spintronic and Nanoscale Applications. Nanomaterials 2025, 15, 148. https://doi.org/10.3390/nano15020148
Fazeli Y, Nourbakhsh Z, Yalameha S, Vashaee D. Anisotropic Elasticity, Spin–Orbit Coupling, and Topological Properties of ZrTe2 and NiTe2: A Comparative Study for Spintronic and Nanoscale Applications. Nanomaterials. 2025; 15(2):148. https://doi.org/10.3390/nano15020148
Chicago/Turabian StyleFazeli, Yasaman, Zahra Nourbakhsh, Shahram Yalameha, and Daryoosh Vashaee. 2025. "Anisotropic Elasticity, Spin–Orbit Coupling, and Topological Properties of ZrTe2 and NiTe2: A Comparative Study for Spintronic and Nanoscale Applications" Nanomaterials 15, no. 2: 148. https://doi.org/10.3390/nano15020148
APA StyleFazeli, Y., Nourbakhsh, Z., Yalameha, S., & Vashaee, D. (2025). Anisotropic Elasticity, Spin–Orbit Coupling, and Topological Properties of ZrTe2 and NiTe2: A Comparative Study for Spintronic and Nanoscale Applications. Nanomaterials, 15(2), 148. https://doi.org/10.3390/nano15020148