Synthesis of Silver Nanoparticle/Multi-Walled Carbon Nanotube Composites and Their Application in Electronic Pastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Methods
2.3. Characterization
3. Results and Discussion
3.1. Performance Analysis of Nitric Acid Treated MWNT
3.2. Effect of Different Reducing Agents on the Synthesis of Ag/MWNT
3.3. Effect of Different Dispersants on Ag/MWNT Synthesis
3.4. XPS Analysis and X-Ray Diffraction Analysis of Ag NPs Attachment
3.5. BET Analysis
3.6. Effect of Ag/MWNTs on the Conductivity of Electronic Pastes
3.7. Effect of Ag/MWNTs on the Thermal Resistance of Electronic Pastes
3.8. Ag/MWNT Effect on Thermal Conductivity of Electronic Pastes
4. Conclusions
- (1)
- The addition of the dispersant SDBS, combined with the weak reducing agent ascorbic acid, facilitates the reduction of Ag NPs to an average size of 10 nm on the MWNT surface, achieving an Ag loading of 80 wt.% on the MWNTs. This method effectively controls the growth of Ag NPs, maintaining optimal particle size for good sintering activity. Additionally, the high specific surface area of MWNTs and the heat resistance of the thermal interface material are fully utilized.
- (2)
- In the electronic paste containing Ag/MWNT composites, MWNT surface Ag NPs and silver powder are sintered together, significantly enhancing carrier transport efficiency. This compensates for the lack of thermal conductivity in a single filler. The sintered structure of the composites, combined with the introduction of MWNTs, enhances the system’s mechanical strength and thermal stability while reducing the mismatch between the thermal expansion coefficients of MWNTs and the resin. The integration of MWNTs improves mechanical strength and thermal stability while mitigating the mismatch between the thermal expansion coefficients of MWNTs and the resin. Additionally, the sintered connection between Ag NPs on the MWNT surface and silver particles reduces the carrier transport barrier, significantly improving the transmission efficiency of phonons and electrons at the filler interface. This leads to a 32.1% improvement in thermal conductivity and a 43.1% improvement in the electrical conductivity of the electronic pastes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ag NPs | Silver nanoparticles |
MWNTs | Multi-walled carbon nanotubes |
Ag/MWNTs | Silver nanoparticle-coated multi-walled carbon nanotubes |
References
- Liu, M.; Hou, Z.; Huang, B.; Gou, L.; Zhang, P. The preparation, characterization, and properties of silver nanoparticle reinforced reduced graphene oxide–poly(amidoamine) nanocomposites. J. Appl. Polym. Sci. 2017, 134, 45172. [Google Scholar] [CrossRef]
- Shahil, K.M.F.; Balandin, A.A. Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials. Nano Lett. 2012, 12, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yu, A.; Ramesh, P.; Bekyarova, E.; Itkis, M.E.; Haddon, R.C. Oxidized Graphite Nanoplatelets as an Improved Filler for Thermally Conducting Epoxy-Matrix Composites. J. Electron. Packag. 2011, 133, 020905. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, P.; Xie, H.; Yu, W. Thermal properties of epoxy resin based thermal interfacial materials by filling Ag nanoparticle-decorated graphene nanosheets. Compos. Sci. Technol. 2016, 125, 17–21. [Google Scholar] [CrossRef]
- Goyal, V.; Balandin, A.A. Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials. Appl. Phys. Lett. 2012, 100, 73113. [Google Scholar] [CrossRef]
- Shen, X.; Jiang, C.; Li, Y.; Huang, J. Thermal metamaterial for convergent transfer of conductive heat with high efficiency. Appl. Phys. Lett. 2016, 109, 201906. [Google Scholar] [CrossRef]
- Yuan, W.; Xiao, Q.; Li, L.; Xu, T. Thermal conductivity of epoxy adhesive enhanced by hybrid graphene oxide/AlN particles. Appl. Therm. Eng. 2016, 106, 1067–1074. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Ong, B.S. Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-Conductivity Elements for Printed Electronics. J. Am. Chem. Soc. 2005, 127, 3266–3267. [Google Scholar] [CrossRef]
- Kul, E.; Aladağ, L.O.; Yesildal, R. Evaluation of thermal conductivity and flexural strength properties of poly(methyl methacrylate) denture base material reinforced with different fillers. J. Prosthet. Dent. 2016, 116, 803–810. [Google Scholar] [CrossRef]
- Yu, F.; Cui, J.; Zhou, Z.; Fang, K.; Johnson, R.W.; Hamilton, M.C. Reliability of Ag Sintering for Power Semiconductor Die Attach in High-Temperature Applications. IEEE Trans. Power Electron. 2017, 32, 7083–7095. [Google Scholar] [CrossRef]
- Gao, Y.; Marconnet, A.M.; Xiang, R.; Maruyama, S.; Goodson, K.E. Heat Capacity, Thermal Conductivity, and Interface Resistance Extraction for Single-Walled Carbon Nanotube Films Using Frequency-Domain Thermoreflectance. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 1524–1532. [Google Scholar] [CrossRef]
- Paknejad, S.A.; Mannan, S.H. Review of silver nanoparticle based die attach materials for high power/temperature applications. Microelectron. Reliab. 2017, 70, 1–11. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, Z.; Zhuang, X.; Liu, F. Multilayer-structured high-performance nanocomposites based on a combination of silver nanoparticles and nanowires. Mater. Lett. 2016, 182, 323–327. [Google Scholar] [CrossRef]
- Seo, M.; Kim, J.S.; Lee, J.G.; Kim, S.B.; Koo, S.M. The effect of silver particle size and organic stabilizers on the conductivity of silver particulate films in thermal sintering processes. Thin Solid Films 2016, 616, 366–374. [Google Scholar] [CrossRef]
- Zhao, Y.; Mumby-Croft, P.; Jones, S.; Dai, A.; Dou, Z.; Wang, Y.; Qin, F. Silver sintering die attach process for IGBT power module production. In Proceedings of the 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, 26–30 March 2017; pp. 3091–3094. [Google Scholar]
- Rivière, L.; Lonjon, A.; Dantras, E.; Lacabanne, C.; Olivier, P.; Gleizes, N.R. Silver fillers aspect ratio influence on electrical and thermal conductivity in PEEK/Ag nanocomposites. Eur. Polym. J. 2016, 85, 115–125. [Google Scholar] [CrossRef]
- Ma, A.J.; Wu, Y.L.; Chen, W.X.; Wu, X. Preparation and Properties of Multi-Walled Carbon Nanotubes/Carbon Fiber/Epoxy Composites. Polym. Compos. 2014, 35, 2150–2153. [Google Scholar] [CrossRef]
- Guadagno, L.; Lamberti, P.; Tucci, V.; Vertuccio, L. Self-Sensing Nanocomposites for Structural Applications: Choice Criteria. Nanomaterials 2021, 11, 833. [Google Scholar] [CrossRef]
- Aman Qazi, R.; Saleem Khan, M.; Siddiq, M.; Ullah, R.; Shah, L.A.; Ali, M. Synthesis and characterization of functionalized MWCNTs/PMMA composites: Device fabrication for RH sensing. Polym. Technol. Mater. 2020, 59, 1608–1620. [Google Scholar] [CrossRef]
- Wang, H.; Guo, J.; Li, J.; Wei, J. Fabrication of bimetallic nanoparticles/multi-walled carbon nanotubes composites for microelectronic circuits. Carbon 2011, 49, 779–786. [Google Scholar] [CrossRef]
- Nagajyothi, P.C.; Veeranjaneya Reddy, L.; Devarayapalli, K.C.; Vattikuti, S.V.P.; Wee, Y.J.; Shim, J. Environmentally Friendly Synthesis: Photocatalytic Dye Degradation and Bacteria Inactivation Using Ag/f-MWCNTs Composite. J. Clust. Sci. 2021, 32, 711–718. [Google Scholar] [CrossRef]
- Hussain, T.; Jabeen, S.; Shehzad, K.; Mujahid, A.; Ahmad, M.N.; Farooqi, Z.H.; Raza, M.H. Polyaniline/Silver Decorated-MWCNT Composites With Enhanced Electrical and Thermal Properties. Polym. Compos. 2018, 39, E1346–E1353. [Google Scholar] [CrossRef]
- Liu, C.; Gan, G.; Li, Y.; Yu, X.; Cheng, J.; Tang, L. Preparation of Silver-Epoxy Resin Paste with Ag/MWCNTs Composites Using Lodinated Multi-walled Carbon Nanotubes. Rare Met. Mater. Eng. 2022, 51, 408–413. [Google Scholar]
- Dinh, N.X.; Van Quy, N.; Huy, T.Q.; Le, A.-T. Decoration of Silver Nanoparticles on Multiwalled Carbon Nanotubes: Antibacterial Mechanism and Ultrastructural Analysis. J. Nanomater. 2015, 2015, 814379. [Google Scholar] [CrossRef]
- Bi, C.; Zhao, D. Enhancement in mechanical properties and conductivity of modified epoxy resin composites. High Perform. Polym. 2018, 30, 1169–1182. [Google Scholar] [CrossRef]
- Yadav, A.; Upadhyaya, A.; Gope, J.; Gupta, S.K.; Negi, C.M.S. Silver-decorated multiwall carbon nanotubes: Synthesis characterization and application in polymer composite-based devices. J. Mater. Sci. Mater. Electron. 2020, 31, 1451–1460. [Google Scholar] [CrossRef]
- Pal, H.; Sharma, V. Thermal conductivity of carbon nanotube–silver composite. Trans. Nonferrous Met. Soc. China 2015, 25, 154–161. [Google Scholar] [CrossRef]
- Li, Y.; Gan, G.; Huang, Y.; Yu, X.; Cheng, J.; Liu, C. Ag-NPs/MWCNT composite-modified silver-epoxy paste with improved thermal conductivity. RSC Adv. 2019, 9, 20663–20669. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, D.; Xiong, Z.; Hu, Y.; Li, W.; Wu, H.; Zuo, C. Ag-MWCNT Composites for Improving the Electrical and Thermal Properties of Electronic Paste. Polymers 2024, 16, 1173. [Google Scholar] [CrossRef]
- Natsuki, J.; Natsuki, T. Silver Nanoparticle/Carbon Nanotube Hybrid Nanocomposites: One-Step Green Synthesis, Properties, and Applications. Nanomaterials 2023, 13, 1173. [Google Scholar] [CrossRef]
- Suh, D.; Moon, C.M.; Kim, D.; Baik, S. Ultrahigh Thermal Conductivity of Interface Materials by Silver-Functionalized Carbon Nanotube Phonon Conduits. Adv Mater. 2016, 28, 7220–7227. [Google Scholar] [CrossRef]
- Amoli, B.M.; Gumfekar, S.; Hu, A.; Zhou, Y.N.; Zhao, B. Thiocarboxylate functionalization of silver nanoparticles: Effect of chain length on the electrical conductivity of nanoparticles and their polymer composites. J. Mater. Chem. 2012, 22, 20048–20056. [Google Scholar] [CrossRef]
- Meschi Amoli, B.; Hu, A.; Zhou, N.Y.; Zhao, B. Recent progresses on hybrid micro–nano filler systems for electrically conductive adhesives (ECAs) applications. J. Mater. Sci. Mater. Electron. 2015, 26, 4730–4745. [Google Scholar] [CrossRef]
- Daoush, W.M.; Hong, S.H. Synthesis of multi-walled carbon nanotube/silver nanocomposite powders by chemical reduction in aqueous solution. J. Exp. Nanosci. 2013, 8, 742–751. [Google Scholar] [CrossRef]
- Zhao, Q.; Xie, M.; Liu, Y.; Yi, J. Improved electroless plating method through ultrasonic spray atomization for depositing silver nanoparticles on multi-walled carbon nanotubes. Appl. Surf. Sci. 2017, 409, 164–168. [Google Scholar] [CrossRef]
- Rodríguez-Galván, A.; Contreras-Torres, F.F.; Basiuk, E.V.; Heredia, A.; Basiuk, V.A. Deposition of silver nanoparticles onto human serum albumin-functionalised multi-walled carbon nanotubes. Can. J. Chem. Eng. 2013, 91, 264–270. [Google Scholar] [CrossRef]
- Korusenko, P.M.; Knyazev, E.V.; Vinogradov, A.S.; Kharisova, K.A.; Filippova, S.S.; Rodionova, U.M.; Levin, O.V.; Alekseeva, E.V. Structure and Electrocatalytic Properties of Sulfur-Containing Multi-Walled Carbon Nanotubes on a Titanium Substrate Modified by a Helium Ion Beam. Nanomaterials 2024, 14, 1948. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, H.; Qin, X.; Wang, X.; Zhao, Z.; Miao, Z.; Chen, L.; Shan, M.; Fang, Y.; Chen, Q. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta 2009, 80, 1029–1033. [Google Scholar] [CrossRef]
- Matsuura, Y. Coherent electron transport through multiple π-π stacked benzene rings. Comput. Theor. Chem. 2025, 1244, 115052. [Google Scholar] [CrossRef]
- Chen, L.; Xie, H.; Yu, W. Multi-walled carbon nanotube/silver nanoparticles used for thermal transportation. J. Mater. Sci. 2012, 47, 5590–5595. [Google Scholar] [CrossRef]
- Yalovega, G.E.; Brzhezinskaya, M.; Dmitriev, V.O.; Shmatko, V.A.; Ershov, I.V.; Ulyankina, A.A.; Chernysheva, D.V.; Smirnova, N.V. Interfacial Interaction in MeOx/MWNTs (Me–Cu, Ni) Nanostructures as Efficient Electrode Materials for High-Performance Supercapacitors. Nanomaterials 2024, 14, 947. [Google Scholar] [CrossRef]
- Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R.; Rousset, A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001, 39, 507–514. [Google Scholar] [CrossRef]
- Yusof, Y.; Zaidi, M.I.; Johan, M.R. Enhanced Structural, Thermal, and Electrical Properties of Multiwalled Carbon Nanotubes Hybridized with Silver Nanoparticles. J. Nanomater. 2016, 2016, 51. [Google Scholar] [CrossRef]
- Vilčáková, J.; Moučka, R.; Svoboda, P.; Ilčíková, M.; Kazantseva, N.; Hřibová, M.; Mičušík, M.; Omastová, M. Effect of Surfactants and Manufacturing Methods on the Electrical and Thermal Conductivity of Carbon Nanotube/Silicone Composites. Molecules 2012, 17, 13157–13174. [Google Scholar] [CrossRef] [PubMed]
- Trinidad, J.; Amoli, B.M.; Zhang, W.; Pal, R.; Zhao, B. Effect of SDS decoration of graphene on the rheological and electrical properties of graphene-filled epoxy/Ag composites. J. Mater. Sci. Mater. Electron. 2016, 27, 12955–12963. [Google Scholar] [CrossRef]
- Choi, J.; Rhee, K.; Park, S. Influence of electrolessly silver-plated multi-walled carbon nanotubes on thermal conductivity of epoxy matrix nanocomposites. Compos. Part B Eng. 2015, 80, 379–384. [Google Scholar] [CrossRef]
Reagent Name | Reagent type | Manufacturer |
---|---|---|
Silver nitrate (AgNO3) | AR, 99% | Xilong Scientific Co., Ltd. Shenzhen, China. |
L-ascorbic acid (C6H8O6) | AR, 99% | Xilong Scientific Co., Ltd. |
Hydrazine Hydrate (N2H4·H2O) | AR, 99% | Xilong Scientific Co., Ltd. |
Anhydrous Ethanol (C2H5OH) | AR, 99% | Xilong Scientific Co., Ltd. |
Epoxy Resin (chemistry) | CP | Xilong Scientific Co., Ltd. |
Flake Silver Powder | 99.5% | Kunming Precious Metals Institute. Kunming, China. |
Silicon Dioxide (SiO2) | CP | Xilong Scientific Co., Ltd. |
Multi-Walled Carbon Nanotubes | 99.9% | Guangxi Qinglu New Materials Technology Co., Ltd. Nanning, China. |
Sodium Dodecyl Sulfate (SDS) | AR, 99% | Xilong Scientific Co., Ltd. |
Sodium Dodecylbenzene Sulfonate (SDBS) | AR, 99% | Xilong Scientific Co., Ltd. |
Formaldehyde (HCHO) | AR, 99% | Guangxi Qinglu New Materials Technology Co., Ltd. Liuzhou, China. |
Numbers | BET Surface Area (m2/g) | Pore Volume (mL/g) | Pore Diameter (nm) |
---|---|---|---|
A. Unprocessed MWNT | 172.743 | 0.669 | 15.51 |
Nitric acid treatment of MWNT | 168.741 | 0.879 | 20.60 |
Nitric acid treatment of MWNT + SDS with Ag/MWNT | 88.197 | 0.461 | 21.69 |
Nitric acid treatment of MWNT + SDBS with Ag/MWNT | 84.087 | 0.447 | 20.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhou, M.; Lu, B.; Zhang, D.; He, H. Synthesis of Silver Nanoparticle/Multi-Walled Carbon Nanotube Composites and Their Application in Electronic Pastes. Nanomaterials 2025, 15, 152. https://doi.org/10.3390/nano15030152
Wang Z, Zhou M, Lu B, Zhang D, He H. Synthesis of Silver Nanoparticle/Multi-Walled Carbon Nanotube Composites and Their Application in Electronic Pastes. Nanomaterials. 2025; 15(3):152. https://doi.org/10.3390/nano15030152
Chicago/Turabian StyleWang, Zizhen, Ming Zhou, Baoying Lu, Duo Zhang, and Hui He. 2025. "Synthesis of Silver Nanoparticle/Multi-Walled Carbon Nanotube Composites and Their Application in Electronic Pastes" Nanomaterials 15, no. 3: 152. https://doi.org/10.3390/nano15030152
APA StyleWang, Z., Zhou, M., Lu, B., Zhang, D., & He, H. (2025). Synthesis of Silver Nanoparticle/Multi-Walled Carbon Nanotube Composites and Their Application in Electronic Pastes. Nanomaterials, 15(3), 152. https://doi.org/10.3390/nano15030152