Unravelling the Cu and Ce Effects in MnO2-Based Catalysts for Low-Temperature CO Oxidation
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of Materials
2.2. Characterization of Materials
2.3. Catalytic Tests
3. Results and Discussion
3.1. Composition and Structure of Catalysts
3.2. Temperature-Programmed Reduction by H2
3.3. Catalytic Properties and Stability in Presence of Water Vapor
3.4. XPS and TEM of Prepared Catalysts
3.5. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Levy, R.J. Carbon monoxide pollution and neurodevelopment: A public health concern. Neurotoxicol. Teratol. 2015, 49, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Urban, L.; Balbach, H.; Webb, M.D. Contemporary issues in environmental assessment. In Handbook of Environmental Engineering Assessment; Butterworth-Heinemann: Oxford, UK, 2007; pp. 361–447. [Google Scholar]
- Klingstedt, F.; Arve, K.; Eränen, K.; Murzin, D.Y. Toward improved catalytic low-temperature NOx removal in diesel-powered vehicles. Acc. Chem. Res. 2006, 39, 273–282. [Google Scholar] [CrossRef]
- Zheng, X.C.; Wu, S.H.; Wang, S.P.; Wang, S.R.; Zhang, S.M.; Huang, W.P. The preparation and catalytic behavior of copper–cerium oxide catalysts for low-temperature carbon monoxide oxidation. Appl. Catal. A 2005, 283, 217–223. [Google Scholar] [CrossRef]
- Liu, X.S.; Jin, Z.N.; Lu, J.Q.; Wang, X.X.; Luo, M.F. Highly active CuO/OMS-2 catalysts for low-temperature CO oxidation. Chem. Eng. J. 2010, 162, 151–157. [Google Scholar] [CrossRef]
- Therrien, A.J.; Hensley, A.J.; Marcinkowski, M.D.; Zhang, R.; Lucci, F.R.; Coughlin, B.; Sykes, E.C.H. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 2018, 1, 192–198. [Google Scholar] [CrossRef]
- Nie, L.; Mei, D.; Xiong, H.; Peng, B.; Ren, Z.; Hernandez, X.I.P.; Wang, Y. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 2017, 358, 1419–1423. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Zhang, X.; Zheng, K.; Wu, C.; Pan, Y.; Li, H.; Wei, S. Structural evolution of anatase-supported platinum nanoclusters into a platinum-titanium intermetallic containing platinum single atoms for enhanced catalytic CO oxidation. Angew. Chem. Int. Ed. 2023, 62, e202213365. [Google Scholar] [CrossRef] [PubMed]
- Barkaoui, S.; Wang, Y.; Zhang, Y.; Gu, X.; Li, Z.; Wang, B.; Zhao, Z. Critical role of NiO support morphology for high activity of Au/NiO nanocatalysts in CO oxidation. iScience 2024, 27, 110255. [Google Scholar] [CrossRef] [PubMed]
- Grifasi, N.; Sartoretti, E.; Montesi, D.; Bensaid, S.; Russo, N.; Deorsola, F.A.; Piumetti, M. Mesostructured manganese oxides for efficient catalytic oxidation of CO, ethylene, and propylene at mild temperatures: Insight into the role of crystalline phases and physico-chemical properties. Appl. Catal. B 2025, 362, 124696. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Xu, G.; Zhang, C.; Li, X.; Sun, Z.; Jia, D. Low-temperature CO oxidation over CeO2 and CeO2@Co3O4 core–shell microspheres. New J. Chem. 2017, 41, 13418–13424. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Y.; Wang, Z.; Liu, W.; Wang, L. Catalytic oxidation of CO over mesoporous copper-doped ceria catalysts via a facile CTAB-assisted synthesis. RSC Adv. 2018, 8, 14888–14897. [Google Scholar] [CrossRef]
- Penkala, B.; Gatla, S.; Aubert, D.; Ceretti, M.; Tardivat, C.; Paulus, W.; Kaper, H. In situ generated catalyst: Copper (II) oxide and copper (I) supported on Ca2Fe2O5 for CO oxidation. Catal. Sci. Technol. 2018, 8, 5236–5243. [Google Scholar] [CrossRef]
- Suib, S.L. Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc. Chem. Res. 2008, 41, 479–487. [Google Scholar] [CrossRef]
- Ma, J.; Wang, C.; He, H. Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. Appl. Catal. A 2017, 201, 503–510. [Google Scholar] [CrossRef]
- Yang, L.; Ma, J.; Li, X.; Zhang, C.; He, H. Enhancing oxygen vacancies of Ce-OMS-2 via optimized hydrothermal conditions to improve catalytic ozone decomposition. Ind. Eng. Chem. Res. 2019, 59, 118–128. [Google Scholar] [CrossRef]
- Chen, C.; Xie, J.; Chen, X.; Zhang, W.; Chen, J.; Jia, A. Cu species-modified OMS-2 materials for enhancing ozone catalytic decomposition under humid conditions. ACS Omega 2023, 8, 19632–19644. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, J.; Zhang, N.; Zheng, K.; Hu, Y.; Liu, X.; Meng, X. The effect of metal ions as dopants on OMS-2 in the catalytic degradation. Catal. Lett. 2020, 150, 2021–2026. [Google Scholar] [CrossRef]
- Wang, X.; Bi, X.; Yao, N.; Elmaci, G.; Ertürk, A.S.; Lv, Q.; Meng, X. Doping strategy-tuned non-radical pathway on manganese oxide for catalytic degradation of parabens. Chem. Eng. J. 2022, 442, 136180. [Google Scholar] [CrossRef]
- Deng, H.; Lu, Y.; Pan, T.; Wang, L.; Zhang, C.; He, H. Metals incorporated into OMS-2 lattice create flexible catalysts with highly efficient activity in VOCs combustion. Appl. Catal. B 2023, 320, 121955. [Google Scholar] [CrossRef]
- Kulchakovskaya, E.V.; Dotsenko, S.S.; Liotta, L.F.; La Parola, V.; Galanov, S.I.; Sidorova, O.I.; Vodyankina, O.V. Synergistic effect in Ag/Fe–MnO2 catalysts for ethanol oxidation. Catalysts 2022, 12, 872. [Google Scholar] [CrossRef]
- Yun, L.; Li, Y.; Zhou, C.; Lan, L.; Zeng, M.; Mao, M.; Zhao, X. The formation of CuO/OMS-2 nanocomposite leads to a significant improvement in catalytic performance for NO reduction by CO. Appl. Catal. A 2017, 530, 1–11. [Google Scholar] [CrossRef]
- Zha, K.; Feng, C.; Han, L.; Li, H.; Yan, T.; Kuboon, S.; Zhang, D. Promotional effects of Fe on manganese oxide octahedral molecular sieves for alkali-resistant catalytic reduction of NOx: XAFS and in situ DRIFTs study. Chem. Eng. J. 2020, 381, 122764. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G.; Gholami, F.; Yang, F. Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: A review. Catal. Rev. 2021, 63, 68–119. [Google Scholar] [CrossRef]
- Wang, X.; Qu, C.; Liu, W.; Meng, F.; Yang, F.; Zhang, X.; Ye, Q. Enhanced low-temperature NH3-SCR performance by g-C3N4 modified Ce-OMS-2 catalyst. Microporous Mesoporous Mater. 2023, 361, 112745. [Google Scholar] [CrossRef]
- Yu, L.; Diao, G.; Ye, F.; Sun, M.; Zhou, J.; Li, Y.; Liu, Y. Promoting effect of Ce in Ce/OMS-2 catalyst for catalytic combustion of dimethyl ether. Catal. Lett. 2011, 141, 111–119. [Google Scholar] [CrossRef]
- Kharlamova, T.S.; Verkhov, V.A.; Kulchakovskaya, E.V.; Svetlichnyi, V.A.; Aires, F.J.C.S.; Bargiela, P.; Vodyankina, O.V. Effect of metal-doping (Me = Fe, Ce, Sn) on phase composition, structural peculiarities, and CO oxidation catalytic activity of cryptomelane-type MnO2. J. Alloys Compd. 2022, 917, 165504. [Google Scholar] [CrossRef]
- Hou, J.; Li, Y.; Mao, M.; Zhao, X.; Yue, Y. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation. Nanoscale 2014, 6, 15048–15058. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, J.; Lyu, L.; Hu, C. Enhanced catalytic degradation of ciprofloxacin over Ce-doped OMS-2 microspheres. Appl. Catal. B 2016, 181, 561–569. [Google Scholar] [CrossRef]
- Wu, X.; Yu, X.; He, X.; Jing, G. Insight into low-temperature catalytic NO reduction with NH3 on Ce-doped manganese oxide octahedral molecular sieves. J. Phys. Chem. C 2019, 123, 10981–10990. [Google Scholar] [CrossRef]
- Abecassis-Wolfovich, M.; Jothiramalingam, R.; Landau, M.V.; Herskowitz, M.; Viswanathan, B.; Varadarajan, T.K. Cerium incorporated ordered manganese oxide OMS-2 materials: Improved catalysts for wet oxidation of phenol compounds. Appl. Catal. B 2005, 59, 91–98. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Z.; Shi, J.; Liu, Z.; Zhou, J.; Shangguan, W. Modified manganese oxide octahedral molecular sieves M′-OMS-2 (M′ = Co, Ce, Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation. Catal. Today 2015, 256, 178–185. [Google Scholar] [CrossRef]
- Jothiramalingam, R.; Viswanathan, B.; Varadarajan, T.K. Preparation, characterization and catalytic properties of cerium incorporated porous manganese oxide OMS-2 catalysts. Catal. Com. 2005, 6, 41–45. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, J. Ce ion substitution position effect on catalytic activity of OMS-2 for benzene oxidation. Mater. Res. Bull. 2019, 118, 110497. [Google Scholar] [CrossRef]
- Qi, L.; Yu, Q.; Dai, Y.; Tang, C.; Liu, L.; Zhang, H.; Chen, Y. Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation. Appl. Catal. B 2012, 119, 308–320. [Google Scholar] [CrossRef]
- Ahasan, M.R.; Wang, Y.; Wang, R. In situ DRIFTS and CO-TPD studies of CeO2 and SiO2 supported CuOx catalysts for CO oxidation. Mol. Catal. 2022, 518, 112085. [Google Scholar] [CrossRef]
- Ye, Z.; Liu, Y.; Nikiforov, A.; Ji, J.; Zhao, B.; Wang, J. The research on CO oxidation over Ce–Mn oxides: The preparation method effects and oxidation mechanism. Chemosphere 2023, 336, 139130. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, J.; Peng, L.; Zhang, H.; Jiang, Z.; Xiong, K.; Yang, N. On the CuO-Mn2O3 oxide-pair in CuMnOx multi-oxide complexes: Structural and catalytic studies. Appl. Surf. Sci. 2022, 575, 151733. [Google Scholar] [CrossRef]
- Konsolakis, M. The role of Copper–Ceria interactions in catalysis science: Recent theoretical and experimental advances. Appl. Catal. B 2016, 198, 49–66. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G. Low-temperature selective catalytic reduction of NO by CO in the presence of O2 over Cu: Ce catalysts supported by multiwalled carbon nanotubes. Ind. Eng. Chem. Res. 2018, 57, 8871–8883. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, X.; Qiu, G.; Liu, F.; Feng, X. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids. Solid State Sci. 2016, 55, 152–158. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. Eur. J. 2003, 9, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Glerup, M.; Krumeich, F.; Nesper, R.; Fjellvåg, H.; Norby, P. Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers. J. Phys. Chem. C. 2008, 112, 13134–13140. [Google Scholar] [CrossRef]
- Dotsenko, S.S.; Verkhov, V.A.; Svetlichnyi, V.A.; Liotta, L.F.; La Parola, V.; Izaak, T.I.; Vodyankina, O.V. Oxidative dehydrogenation of ethanol on modified OMS-2 catalysts. Catal. Today 2020, 357, 503–510. [Google Scholar] [CrossRef]
- Post, J.E.; McKeown, D.A.; Heaney, P.J. Raman spectroscopy study of manganese oxides: Tunnel structures. Am. Mineral. 2020, 105, 1175–1190. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, J.; Zhang, S.; Wang, S.; Deng, S.; Wang, B.; Yu, G. Catalytic removal of gaseous HCBz on Cu doped OMS: Effect of Cu location on catalytic performance. Appl. Catal. B 2014, 150, 167–178. [Google Scholar] [CrossRef]
- Feng, Q.; Kanoh, H.; Miyai, Y.; Ooi, K. Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase. Chem. Mat. 1995, 7, 148–153. [Google Scholar] [CrossRef]
- Férey, G. Crystal Chemistry: From Basics to Tools for Materials Creation; World Scientific Publishing: Singapore, 2018. [Google Scholar]
- Bernardini, S.; Bellatreccia, F.; Casanova Municchia, A.; Della Ventura, G.; Sodo, A. Raman spectra of natural manganese oxides. J. Raman Spectrosc. 2019, 50, 873–888. [Google Scholar] [CrossRef]
- Chen, T.; Dou, H.; Li, X.; Tang, X.; Li, J.; Hao, J. Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde. Microporous Mesoporous Mat. 2009, 122, 270–274. [Google Scholar] [CrossRef]
- Kótai, L.; Petruševski, V.M.; Bereczki, L.; Béres, K.A. Catalytic Properties of the Spinel-Like CuxMn3−xO4 Copper Manganese Oxides—An Overview. Catalysts 2023, 13, 129. [Google Scholar] [CrossRef]
- Sokovikov, N.A.; Svintsitskiy, D.A.; Metalnikova, V.M.; Cherepanova, S.V.; Boronin, A.I. A CuMnO2 based copper-manganese catalyst for low-temperature CO oxidation. J. Struct. Chem. 2023, 64, 1098–1113. [Google Scholar] [CrossRef]
- Imamura, S.; Shono, M.; Okamoto, N.; Hamada, A.; Ishida, S. Effect of cerium on the mobility of oxygen on manganese oxides. Appl. Catal. A 1996, 142, 279–288. [Google Scholar] [CrossRef]
- Cai, C.; Chen, J.; Fu, W.; Ning, S.; Zhou, H.; Kashif, M.; Su, Y. Study on CO-SCR performance of Ce modified OMS-2 catalysts. J. Environ. Chem. Eng. 2023, 11, 111589. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, Z.; Feng, X.; Tan, W.; Qiu, G.; Liu, F. α-MnO2 nanowires transformed from precursor δ-MnO2 by refluxing under ambient pressure: The key role of pH and growth mechanism. Mater. Chem. Phys. 2011, 125, 678–685. [Google Scholar] [CrossRef]
- Lv, J.; Chen, C.; Guo, X.; Ding, W.; Yang, W. Crystal facet effect of γ-Al2O3 on catalytic property of CuO/γ-Al2O3 for CO oxidation. Mol. Catal. 2023, 547, 113405. [Google Scholar] [CrossRef]
- Sarkodie, B.; Shen, B.; Asinyo, B.; Hu, Y.; Jiang, J.; Li, C. Highly efficient Au/Fe2O3 for CO oxidation: The vital role of spongy Fe2O3 toward high catalytic activity and stability. J. Colloid Interface Sci. 2022, 608, 2181–2191. [Google Scholar] [CrossRef] [PubMed]
- Bi, F.; Ma, S.; Gao, B.; Yang, Y.; Wang, L.; Fei, F.; Zhang, X. Non-oxide supported Pt-metal-group catalysts for efficiently CO and toluene co-oxidation: Difference in water resistance and degradation intermediates. Fuel. 2023, 344, 128147. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, K.; Yang, X.; Chen, X.; Shen, X.; Li, Y.; Zhang, Y. In-situ formed stable Pt nanoclusters on ceria-zirconia solid solutions induced by hydrothermal aging for efficient low-temperature CO oxidation. J. Chem. Eng. 2024, 498, 155427. [Google Scholar] [CrossRef]
- Camposeco, R.; Torres, A.E.; Zanella, R. Influence of the preparation method of Au, Pd, Pt, and Rh/TiO2 nanostructures and their catalytic activity on the CO oxidation at low temperature. Top. Catal. 2022, 65, 798–816. [Google Scholar] [CrossRef]
Sample | T calc., °C | XRF | Textural Characteristics | |||||
---|---|---|---|---|---|---|---|---|
Ce/∑Me | Cu/∑Me | K/∑Me | SBET m2/g | Vpore. cm3/g | dmeso, nm | dav, nm | ||
OMS-2 | 450 | – | – | 0.120 | 15.9 | 0.07 | 21.4 | 378 |
Ce-OMS-2 | 450 | 0.016 | – | 0.038 | 46.5 | 0.17 | 14.9 | 129 |
Cu/OMS-2 | 450 | – | 0.049 | 0.122 | 16.7 | 0.08 | 22.3 | 359 |
Cu/Ce-OMS-2-450 | 450 | 0.015 | 0.051 | 0.035 | 37.3 | 0.15 | 16.8 | 161 |
Cu/Ce-OMS-2-300 | 300 | 0.014 | 0.053 | 0.032 | 40.5 | 0.18 | 15.0 | 148 |
Sample | Phase | Phase Content, wt. % | Lattice Parameter, A | CSR, nm |
---|---|---|---|---|
Cu/Ce-OMS-2-300 | OMS-2 (JCPDS 29-1020) | 30 | a: 9.7369 c: 2.8762 | 18 |
β-MnO2 (JCPDS 24-0735) | 70 | a: 4.4044 c: 2.8621 | 16 | |
Ce-OMS-2 | OMS-2 (JCPDS 29-1020) | 30 | a: 9.7403 c: 2.8682 | 20 |
β-MnO2 (JCPDS 24-0735) | 70 | a: 4.3922 c: 2.8677 | 13 | |
Cu/OMS-2 | OMS-2 (JCPDS 29-1020) | 100 | a: 9.8153 c: 2.8553 | 30 |
Cu/Ce-OMS-2-450 | OMS-2 (JCPDS 29-1020) | 30 | a: 9.7514 c: 2.8713 | 20 |
β-MnO2 (JCPDS 24-0735) | 70 | a: 4.3969 c: 2.8717 | 13 |
Sample | H2 Consumption, mmol/g |
---|---|
OMS-2 | 7.98 |
Cu/OMS-2 | 8.14 |
Ce–OMS-2 | 5.97 |
Cu/Ce–OMS-2-450 | 6.79 |
Cu/Ce–OMS-2-300 | 8.07 |
Sample | Mn 2p | Mn 3s | Mn 3p | Cu 2p | α’(Cu) | O1s | Cu/Mn | Ce/Mn | K/Mn |
---|---|---|---|---|---|---|---|---|---|
OMS-2 | 642.1 | 84.3 | 49.7 | 529.5 | 0.060 | ||||
Ce/OMS-2 | 642.1 | 84.3 | 49.7 | 529.5 | 0.045 | 0.014 | |||
Cu/OMS-2 | 642.1 | 84.3 | 49.7 | 934.1 | 1851.7 | 529.5 | 0.19 | 0.068 | |
Cu-Ce/OMS-2-300 | 642.1 | 84.3 | 49.7 | 934.0 | 1851.6 | 529.5 | 0.24 | 0.041 | 0.014 |
Cu-Ce/OMS-2-450 | 642.0 | 84.1 | 49.4 | 934.0 | 1851.7 | 529.5 | 0.12 | 0.044 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blinov, E.D.; Kulchakovskaya, E.V.; Sokovikov, N.A.; Svetlichnyi, V.A.; Kulinich, S.A.; Vodyankina, O.V. Unravelling the Cu and Ce Effects in MnO2-Based Catalysts for Low-Temperature CO Oxidation. Nanomaterials 2025, 15, 166. https://doi.org/10.3390/nano15030166
Blinov ED, Kulchakovskaya EV, Sokovikov NA, Svetlichnyi VA, Kulinich SA, Vodyankina OV. Unravelling the Cu and Ce Effects in MnO2-Based Catalysts for Low-Temperature CO Oxidation. Nanomaterials. 2025; 15(3):166. https://doi.org/10.3390/nano15030166
Chicago/Turabian StyleBlinov, Egor D., Ekaterina V. Kulchakovskaya, Nikolai A. Sokovikov, Valery A. Svetlichnyi, Sergei A. Kulinich, and Olga V. Vodyankina. 2025. "Unravelling the Cu and Ce Effects in MnO2-Based Catalysts for Low-Temperature CO Oxidation" Nanomaterials 15, no. 3: 166. https://doi.org/10.3390/nano15030166
APA StyleBlinov, E. D., Kulchakovskaya, E. V., Sokovikov, N. A., Svetlichnyi, V. A., Kulinich, S. A., & Vodyankina, O. V. (2025). Unravelling the Cu and Ce Effects in MnO2-Based Catalysts for Low-Temperature CO Oxidation. Nanomaterials, 15(3), 166. https://doi.org/10.3390/nano15030166