A Review of the Carcinogenic Potential of Thick Rigid and Thin Flexible Multi-Walled Carbon Nanotubes in the Lung
Abstract
:1. Introduction
2. Carcinogenic Studies Using Direct Administration of MWCNTs to the Mesothelium via Intraperitoneal Injection or Intrascrotal Injection (Table 1)
Injection | Animal | Observation Period | CNT | Diameter Length | Dose per Animal | Mesothelioma | |
---|---|---|---|---|---|---|---|
Takagi et al., 2008 [20] | I.P | p53(+/−) Mice | 180 days | Control | 0 mg | 0 | |
Fullerene | 3 mg | 0 | |||||
Crocidolite | 3 mg | 14/18 | |||||
MWCNT-7 | Figure 1 [20] | 3 mg | 14/16 | ||||
Takagi et al., 2012 [23] | I.P. | p53(+/−) Mice | 1 year | Control | 0 mg | 0 | |
MWCNT-7 | Diameter: Range 70–170 nm Average 90 nm Length: Range 1–20 µm Average 2 µm | 3 µg 30 µg 300 µg | 5/20 17/20 19/20 | ||||
Sakamoto et al., 2009 [25] | I.S. | Fischer 344 rats | 52 weeks | Control | 0 mg | 0 | |
Crocidolite | 0.47 mg | 0 | |||||
MWCNT-7 | Figure 1 [25] | 0.24 mg | 6/7 | ||||
Nagai et al., 2011 [26] | I.P. | Fischer 344/Brown F1 rats | 350 days | Control | 0 mg | 0 | |
NT50a | 49.95 ± 0.63 nm 5.29 ± 0.12 µm | 1 mg 10 mg | 13/13 43/43 | ||||
NT50a without aggregation | 49.95 ± 0.63 nm 5.29 ± 0.12 µm | same number of fibers as in the 1 mg NT145 group | 12/15 | ||||
NT50b | 52.4 ± 0.72 nm 4.6 ± 0.10 µm | 10 mg | 6/6 | ||||
NT145 | 143.5 ± 1.6 nm 4.34 ± 0.08 µm | 1 mg 10 mg | 5/29 28/30 | ||||
NTtngl | 15 nm 3 µm | 10 mg | 0/15 | ||||
Nagai et al., 2013 [28] | I.P. | Fischer 344/Brown F1 rats | 3 years | NTtngl | 15 nm 3 µm | 10 mg | 0/6 |
Muller et al., 2009 [29] | I.P. | Wistar rats | 2 years | Control | 0 mg | 1/26 | |
Crocidolite | 2 mg | 9/26 | |||||
MWCNT+ | 11.3 ± 3.9 nm Length ~0.7 µm | 2 mg 20 mg | 2/50 0/50 | ||||
MWCNT- | 11.3 ± 3.9 nm Length ~0.7 | 20 mg | 3/50 | ||||
Rittinghausen et al., 2014 [30] | I.P. | Wistar rats | 24 months | Control | 0 mg | 1/50 | |
Amosite Asbestos | 1.4 mg | 33/50 | |||||
MWCNT A | 85 ± 1600 nm 8.57 ± 151 µm | 0.48 mg 2.39 mg | 49/50 45/50 | ||||
MWCNT B | 62 ± 1710 nm 9.30 ± 1.63 µm | 0.96 mg 4.80 mg | 46/50 45/50 | ||||
MWCNT C | 40 ± 1570 nm 10.24 ± 1.64 µm | 0.87 mg 4.36 mg | 42/50 47/50 | ||||
MWCNT D | 37 ± 1450 nm 7.91 ± 1.40 µm | 1.51 mg 7.54 mg | 20/50 35/50 | ||||
Sakamoto et al., 2018 [31] | I.P. | Fischer 344 rats | 52 weeks | Control | 0 mg | 0/10 | |
M-CNT | 66.8 nm 6.65 µm | 1 mg/kg | 12/12 | ||||
N-CNT | 59.2 nm 5.48 µm | 1 mg/kg | 10/10 | ||||
WL-CNT | 70.9 nm 7.31 µm | 1 mg/kg | 15/15 | ||||
SD1-CNT | 177.4 nm 4.51 µm | 1 mg/kg | 14/14 | ||||
WS-CNT (tangled) | 44.5 nm 0.5–2 µm | 1 mg/kg | 0/14 | ||||
SD2-CNT (tangled) | 13.5 nm Not Determined | 1 mg/kg | 1/14 | ||||
T-CNT (tangled) | 35.8 nm Not Determined | 1 mg/kg | 1/13 |
3. Short and Medium-Term Studies of Pleural Lesions Induced by Administration of MWCNTs into the Lung (Table 2)
Route of Administration | Animal | Administration/ Exposure Schedule | Sacrifice | CNT | Diameter Length | Dose per Animal | Pleural Lesions | |
---|---|---|---|---|---|---|---|---|
Ryman-Rasmussen et al., 2009 [33] | Nose-only Inhalation | C57BL/6 Mice | 6 h | 1 day, 2 weeks, 6 weeks, and 14 weeks after administration | Control | 0 mg | None | |
Carbon Black | 30 mg/m3 | None | ||||||
MWCNT | 10–30 nm 0.5–40 µm | 1 mg/m3 30 mg/m3 | None Subpleural fibrosis | |||||
Xu et al. (2012) [38] | Intratracheal Instillation | F344 rats | Once every other day for 9 days | 6 h after the final administration | Control | 0 mg | None | |
MWCNT-N | Diameter was not determined Length 3.64 ± 2.26 µm | 1.25 mg | Proliferative lesions of the visceral mesothelium. | |||||
MWCNT-M (MWCNT-7) | Diameter was not determined Length 5.11 ± 2.91 µm | 1.25 mg | Proliferative lesions of the visceral mesothelium. | |||||
Murphy et al. (2013) [39] | Pharyngeal Aspiration | C57BL/6 mice | Single administration | 1 and 6 weeks after administration | Control | 0 µg | None | |
Tangled | 14.84 nm 1–5 µm | 25 µg | None | |||||
Short Rigid | 25.7 nm 1–2 µm | 25 µg | None | |||||
Long Rigid | 165.02 nm 36 µm | 25 µg | Inflammation and fibrosis on the parietal pleura at 6 weeks | |||||
Xu et al. (2014) [40] | Intratracheal Instillation | F344 rats | Once every 2 weeks for 24 weeks (13 administrations) | 24 h after the final administration | Control | 0 mg | None | |
MWCNT-short | 15 nm 3 µm | 1.625 mg | Inflammation and fibrosis and mesothelial proliferative lesions in the parietal pleura. | |||||
MWCNT-long | 50 nm 8 µm | 1.625 mg | Inflammation and fibrosis and mesothelial proliferative lesions in the parietal pleura. |
4. Short and Medium-Term Studies of Lung Lesions Induced by the Administration of Thick Rigid MWCNTs into the Lung by Instillation and Pharyngeal Aspiration (Table 3)
5. Short and Medium-Term Studies of Lung Lesions Induced by Administration of Thin Flexible MWCNTs into the Lung by Instillation and Pharyngeal Aspiration (Table 3)
Reference | Route of Administration | Animal | Administration/ Exposure Schedule | Sacrifice | CNT | Diameter Length | Dose per Animal | Lung Lesions |
---|---|---|---|---|---|---|---|---|
Kobayashi et al., 2010 [41] | Intratracheal Instillation | Sprague Dawley rats | Single administration | 3 days, 1 week, 1 month, 3 months, and 6 months after administration | Control | 0 mg | None | |
MWCNT-7 | median diameter 60 nm median length 1.5 µm However, also see Figure 2 [44] | 0.04 mg/kg | Pulmonary inflammation was weak and transient. Neither chronic inflammation or fibrosis was observed at any of the doses administered. | |||||
0.2 mg/kg | ||||||||
1.0 mg/kg | ||||||||
Aiso et al., 2010 [42] | Intratracheal Instillation | F344 rats | Single administration | 1, 7, 28, and 91 days after administration | Control | 0 µg | None | |
MWCNT-7 | 88 nm 5.0 µm | 40 µg (160 µg/kg) | Epithelial type II hyperplasia and fibrosis. | |||||
160 µg (640 µg/kg) | Epithelial type II hyperplasia and fibrosis, and induction of microgranulomas. | |||||||
Porter et al., 2010 [43] | Pharyngeal Aspiration | C57BL/6J mice | Single administration | 1, 7, 28, and 56 days after administration | Control | 0 µg | None | |
MWCNT-7 | Figure 4 [40] | 10 µg | Inflammation and fibrosis at days 7 and 28. | |||||
20 µg | Inflammation and fibrosis at days 7, 28, and 56. | |||||||
40 µg | Inflammation and fibrosis at days 7 and 28. | |||||||
80 µg | Inflammation and fibrosis at days 7, 28, and 56. | |||||||
Morimoto et al., 2012 [44] | Intratracheal Instillation | Wistar rats | Single administration | 3 days, 1 week, 1 month, 3 months, and 6 months after administration | Controls | 0 mg | None | |
MWCNT | 48 nm 0.94 µm | 0.66 mg/kg | Transient inflammation | |||||
3.3 mg/kg | Persistent inflammation | |||||||
Fenoglio et al., 2012 [45] | Intratracheal Instillation | Wistar rats | Single administration | 3 days after administration | Control | 0 mg | None | |
MWCNT 9.4 | 9.4 nm 0.1–1 µm | 2 mg | High inflammatory parameters | |||||
MWCNT 70 | 70 nm 1–3 µm | 2 mg | Inflammatory parameters close to control levels | |||||
Murphy et al., 2013 [39] | Pharyngeal Aspiration | C57BL/6 mice | Single administration | 1 and 6 weeks after administration | Control | 0 µg | None | |
Tangled | 14.84 nm 1–5 µm | 25 µg | 0 | |||||
Short Rigid | 25.7 nm 1–2 µm | 25 µg | None | |||||
Long Rigid | 165.02 nm 36 µm | 25 µg | Inflammation at 1 week returned to basal levels at 6 weeks. Fibrosis was present at 6 weeks. | |||||
Xu et al., 2014 [40] | Intratracheal Instillation | F344 rats | Once every 2 weeks for 24 weeks(13 administrations) | 24 h after the final administration | Control | 0 mg | None | |
MWCNT-short | 15 nm 3 µm | 1.625 mg | MWCNT-short was more toxic to the lung than MWCNT-long. | |||||
MWCNT-long | 50 nm 8 µm | 1.625 mg | ||||||
Poulsen et al., 2015 [46] | Intratracheal Instillation | C57BL/6 mice | Single administration | 1, 3, and 28 days after administration | Control | 0 µg | None | |
CNT small | 11 nm 0.85 µm | 18 µg | Persistent inflammation | |||||
54 µg | Persistent inflammation | |||||||
162 µg | Persistent inflammation and fibrosis | |||||||
CNT large | 67 nm 4.05 µm | 18 µg | Persistent inflammation | |||||
54 µg | Persistent inflammation | |||||||
162 µg | Persistent inflammation and fibrosis | |||||||
Muller et al., 2005 [47] | Intratracheal Instillation | Sprague Dawley rats | Single administration | 3, 15, 28, and 60 days after administration | Control | 0 mg | None | |
MWCNT | 9.7 ± 2.1 nm 5.9 ± 0.05 µm | 0.5 mg | Collagen deposition was not elevated at 60 days | |||||
2 mg | Elevated levels of collagen deposition at 60 days | |||||||
5 mg | Elevated levels of collagen deposition at 60 days | |||||||
Ground MWCNT | 11.3 ± 3.9 nm 0.7 ± 0.07 µm | 0.5 mg | Elevated levels of collagen deposition at 60 days | |||||
2 mg | Elevated levels of collagen deposition at 60 days | |||||||
5 mg | Elevated levels of collagen deposition at 60 days | |||||||
Ronzani et al., 2012 [48] | Intranasal Instillation | BALB/c mice | Single administration | 24 h after administration | Control | 0 µg | None | |
MWCNT | 10–15 nm 0.1–10 µm | 6.25 µg | Elevated inflammatory parameters 24 h after a single administration. | |||||
Administered on days 0, 7, and 14 | 7 days after administration (Day 21) | Control | 0 µg | None | ||||
MWCNT | 10–15 nm 0.1–10 µm | 1.5 µg | Dose dependent inflammatory response. Dose dependent collagen deposition. | |||||
6.25 µg | ||||||||
25 µg | ||||||||
Poulsen et al., 2016 [49] | Intratracheal Instillation | C57BL/6J BomTac mice | Single administration | 1, 28, and 92 days after administration | Control | 0 µg | None | |
Carbon Black | 162 µg | Increase neutrophil counts on days, 1, 28, 92 | ||||||
Crocidolite | 6 µg | Increase neutrophil counts on days 1, 28 | ||||||
18 µg | Increase neutrophil counts on days 1, 28, 92 | |||||||
NRCWE-040 Pristine (Group I) | 20.56 ± 6.94 nm 518.9 ± 598 | 6 µg | None | |||||
18 µg | Increase neutrophil counts on day 1 | |||||||
54 µg | Increase neutrophil counts on days 1, 28 | |||||||
NRCWE-041 OH-functionalized (Group I) | 26.38 ± 11.08 nm 1005 ± 2948 nm | 6 µg | Increase neutrophil counts on day 1 | |||||
18 µg | Increase neutrophil counts on day 1 | |||||||
54 µg | Increase neutrophil counts on days 1, 28 | |||||||
NRCWE-042 COOH-functionalized (Group I) | 20.5 ± 5.32 nm 732.2 ± 971.9 nm | 6 µg | Increase neutrophil counts on day 1 | |||||
18 µg | Increase neutrophil counts on day 1 | |||||||
54 µg | Increase neutrophil counts on days 1, 28 | |||||||
NRCWE-043 Pristine (Group II) | 26.73 ± 6.88 nm 771.3 ± 3471 nm | 6 µg | None | |||||
18 µg | Increase neutrophil counts on day 1 | |||||||
54 µg | Increase neutrophil counts on days 1, 28 | |||||||
NRCWE-044 OH-functionalized (Group II) | 32.55 ± 14.4 nm 1330 ± 2454 nm | 6 µg | None | |||||
18 µg | Increase neutrophil counts on day 1 | |||||||
54 µg | Increase neutrophil counts on days 1, 28 | |||||||
NRCWE-045 COOH-functionalized (Group II | 28.07 ± 13.85 nm 1553 ± 2954 nm | 6 µg | None | |||||
18 µg | Increase neutrophil counts on day 1 | |||||||
54 µg | Increase neutrophil counts on day 1 | |||||||
NRCWE-046 Pristine (Group III) | 17.22 ± 5.77 nm 717.2 ± 1214 nm | 6 µg | Increase neutrophil counts on day 1 | |||||
18 µg | Increase neutrophil counts on days 1, 28 | |||||||
54 µg | Increase neutrophil counts on days 1, 28, 92 | |||||||
NRCWE-047 OH-functionalized (Group III) | 12.96 ± 4.44 nm 532.5 ± 591.9 nm | 6 µg | Increase neutrophil counts on day 1 | |||||
18 µg | Increase neutrophil counts on days 1, 28 | |||||||
54 µg | Increase neutrophil counts on days 1, 28, 92 | |||||||
NRCWE-048 COOH-functionalized (Group III) | 15.08 ± 4.69 nm 1604 ± 5609 | 6 µg | Increase neutrophil counts on days 1, 28 | |||||
18 µg | Increase neutrophil counts on days 1, 28 | |||||||
54 µg | Increase neutrophil counts on days 1, 28, 92 | |||||||
NRCWE-049 NH2-functionalized (Group III) | 13.85 ± 6.09 nm 731.1 ± 1473 | 6 µg | Increase neutrophil counts on day 1 | |||||
18 µg | Increase neutrophil counts on days 1, 28 | |||||||
54 µg | Increase neutrophil counts on days 1, 28, 92 | |||||||
Han et al., 2010 [50] | Oropharyngeal Aspiration | C57B1 mice | Single administration | 1 and 7 days after administration | Controls | 0 µg | None | |
MWCNT | 31 ± 23 nm 20 ± 10 µm | 20 µg | Elevated inflammatory parameters at day 1. Elevated levels of neutrophils in the BALF at day 7, but other inflammatory parameters had returned to control levels by day 7. | |||||
40 µg |
6. Short and Medium-Term Studies of Lung Lesions Induced by Administration of MWCNTs, Other than MWCNT-7, by Inhalation (Table 4)
Reference | Route of Administration | Animal | Administration/ Exposure Schedule | Sacrifice | CNT | Diameter Length | Dose per Animal | Lung Lesions |
---|---|---|---|---|---|---|---|---|
Ellinger-Ziegelbauer and Pauluhn 2009 [51] | Nose-only inhalation | Wistar rats | 6 h | 7, 28, 90 days after the end of exposure | Control | 0 mg/m3 | None | |
MWCNT-0.11% cobalt | 10–16 nm Lengths not specified | 10.7 mg/m3 | Concentration dependent pulmonary inflammation that regressed over time. Cobalt impurities had a minimal effect on the induction or regression of inflammation. | |||||
MWCNT-0.53% cobalt | 10–16 nm (Figure 3 [54]) Figure 3 [54] | 11.0 mg/m3 | ||||||
241.3 mg/m3 | ||||||||
Pauluhn 2010 [52] | Nose-only inhalation | Wistar rats | 6 h/day 5 days per week 13 weeks | 8 weeks (interim sacrifice) 13 weeks (end of exposure) Weeks 17, 26, 39 | Control | 0 mg/m3 | None | |
MWCNT-0.53% cobalt | 10 nm (Figure 3 [54]) 200-300 nm (Figure 3 [54]) | 0.1 mg/m3 | Minimal fibrosis. | |||||
0.4 mg/m3 | Fibrosis and minimal inflammation. | |||||||
1.5 mg/m3 | Fibrosis and mild inflammation. Decreased clearance of MWCNT from the lung | |||||||
6 mg/m3 | Fibrosis, inflammation, and epithelial hyperplasia. Decrease clearance of MWCNT from the lung. | |||||||
Mitchell et al., 2007 [55] | Whole-body inhalation | C57BL/6 mice | 6 h/day 7 or 14 days | 1 day after the end of exposure | Control | 0 mg/m3 | None | |
MWCNT | 10–20 nm 5–15 µm | 0.3 mg/m3 1 mg/m3 5 mg/m3 | No lung lesions developed | |||||
Ma-Hock et al., 2009 [53] | Nose-only inhalation | Wistar rats | 6 h/day 5 days per week 13 weeks | 1 day after the end of exposure | Control | 0 mg/m3 | None | |
MWCNT | 5–15 nm 0.1–10 µm | 0.1 mg/m3 0.5 mg/m3 2.5 mg/m3 | Dose dependent induction of granulomatous inflammation in the lung. Inflammation in the nasal cavity, larynx, and trachea. | |||||
Ma-Hock et al., 2013 [56] | Nose-only inhalation | Wistar rats | 6 h/day 5 days | Immediately after the last exposure. 3, 21, and 24 days after the last exposure | Control | 0 mg/m3 | None | |
MWCNT | 15 nm Lengths not determined | 0.1 mg/m3 | None | |||||
0.5 mg/m3 | Inflammation at day 7 (3 days after the last exposure). Inflammation was resolved at day 28 (24 days after the last exposure). | |||||||
2.5 mg/m3 | Inflammation at day 7 and at day 28. | |||||||
Pothmann et al., 2015 [57] | Nose-only inhalation | Wistar rats | 6 h/day 5 days per week 90 days | 24 h and 90 days after the last exposure | Control | 0 mg/m3 | None | |
MWCNT | 12.1 ± 3.5 nm 1069 ± 1102 nm | 0.05 mg/m3 | None | |||||
0.25 mg/m3 | Mild induction of inflammation at 24 h. Inflammation was resolved at 90 days after the last exposure. | |||||||
5.0 mg/m3 | Induction of inflammation at 24 h. Inflammatory parameters remained elevated at 90 days. | |||||||
Kim et al., 2020 [58] | Nose-only inhalation | Sprague Dawley rats | 6 h/day 5 days per week 4 weeks | 1, 7, and 28 days after the last exposure. | Control | 0 mg/m3 | None | |
MWCNT | 8–10 nm 100–200 µm | 0.257 mg/m3 | Non-significant increase in inflammatory parameters. | |||||
1.439 mg/m3 | Increase in inflammatory parameters at days 1 and 7. Inflammatory parameters returned to base line levels at day 28. | |||||||
4.253 mg/m3 | Increase in inflammatory parameters at days 1, 7, and 28. | |||||||
Morimoto et al., 2012 [44] | Whole-body inhalation | Wistar rats | 6 h/day, 5 days per week 4 weeks | 3 days, 1 month, and 3 months after exposure | Control | 0 mg/m3 | None | |
MWCNT | 48 nm 0.94 µm | 0.37 ± 0.18 mg/m3 | Inflammation 3 days after exposure. Inflammatory parameters returned to basal levels at 1 month and 3 months after exposure. |
7. Two-Year Carcinogenicity Studies (Table 5)
Reference | Route of Administration | Animal | Administration/ Exposure Schedule | Terminal Sacrifice | CNT | Diameter Length | Dose per Animal | Lung Lesions |
---|---|---|---|---|---|---|---|---|
Sargent et al. (2014) [32] | Whole-body inhalation | B6C3F1 mice | Intraperitoneal Injection of methylcholanthrene (MCA) followed by inhalation exposure to 5 mg/m3 MWCNT-7 for 5 h/day for 15 days | 17 months after exposure to MWCNT-7 | MWCNT-7 | Mitsui-7 MWNT-7 lot #061220-31 | 5 mg/m3 | MWCNT-7 Promoted the development of MCA initiated lung cancer. |
Kasai et al. (2016) [59] | Whole-body inhalation | F344/DuCrlCrlj rats | 6 h/day 5 days per week 104 weeks | End of exposure at 104 weeks | MWCNT-7 | 92.9–98.2 ng 5.4–5.9 µm | Vehicle | Not carcinogenic |
0.02 mg/m3 | Not carcinogenic | |||||||
0.2 mg/m3 | Carcinogenic in the lungs of male rats No pleural lesions. | |||||||
2 mg/m3 | Carcinogenic in the lungs of both male and female rats. Hyperplasia in the parietal pleura of both male and female rats. | |||||||
Numano et al. (2019) [60] | Intratracheal Instillation | F344/DuCrlCr rats | 125 µg once a week for 12 weeks (total dose of 1.5 mg/rat) | Lifetime study | MWCNT-7 | Mitsui-7 MWNT-7 | 1.5 mg | 1 rat died from a spontaneous pituitary tumor. The remaining 18 rats died from malignant pleural mesothelioma. |
Hojo et al. (2022) [61] | Intratracheal Instillation | F344/DuCrlCrlj rats | 1 administration of 0.125 or 0.5 mg/kg every 4 weeks. 26 administrations. | End of exposure at 2 years. | MWCNT-7 | Mitsui-7, MWCNT-7 lot #060 125-01 k | Vehicle | 1/30 Lung tumor 0/30 Malignant pleural mesothelioma |
3 mg/kg | 3/29 Lung tumors 4/29 Malignant pleural mesothelioma | |||||||
12 mg/kg | 11/28 Lung tumors 12/28 Malignant pleural mesothelioma | |||||||
Suzui et al. (2016) [62] | Intratracheal Instillation | F344/Crj rats | 1 administration of 125 µg/rat every other day. 8 administrations. | 2 years | MWCNT-N | Vehicle | Not carcinogenic | |
30–80 nm diameter Unfiltered: 4.2 ± 2.9 µm | 1 mg/rat | 4/12 Lung tumors, 3/12 malignant mesothelioma. | ||||||
30–80 nm diameter Flow through: 2.6 ± 2.9 µm | 1 mg/rat | 3/12 Lung tumors, 3/12 malignant mesothelioma. | ||||||
30–80 nm diameter Retained: Not determined | 1 mg/rat | 2/14 Lung tumors, 2/14 malignant mesothelioma. | ||||||
Saleh et al. (2020) [63] | Intratracheal Instillation | F344/DuCrlCrlj rats | 1 administration of 62.5 µg or 125 µg/rat per week. 8 administrations. | 2 years | Vehicle | 1/19 lung tumor No pleural lesions | ||
MWCNT-A | 150 ± 43 nm 6.39 ± 3.07 µm | 0.5 mg/rat | 5/20 lung tumors No pleural lesions | |||||
1 mg/rat | 4/20 lung tumors No pleural lesions | |||||||
MWCNT-B | 7.4 ± 2.7 nm 1.04 ± 0.71 µm | 0.5 mg/rat | 5/20 lung tumors No pleural lesions | |||||
1 mg/rat | 7/20 lung tumors No pleural lesions | |||||||
Saleh et al. (2022) [65] | Intratracheal Instillation | F344/DuCrlCrlj rats | 1 administration of 15.625 µg, 31.25 µg, or 62.5 µg/rat per week. 8 administrations. | 2 years | Vehicle | 1/21 Lung tumor No pleural lesions | ||
DWCNT | 14.32 ± 10.04 nm Not determined | 0.125 mg/rat | 4/25 Lung tumors No pleural lesions | |||||
0.25 mg/rat | 4/26 Lung tumors No pleural lesions | |||||||
0.5 mg/rat | 7/24 Lung tumors No pleural lesions | |||||||
MWCNT-7 | 76.49 ± 31.14 nm 8.79 ± 4.41 µm | 0.5 mg/rat | 3/9 Lung tumors (The other 16 rats died from malignant mesothelioma) |
8. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Donaldson, K.; Aitken, R.; Tran, L.; Stone, V.; Duffin, R.; Forrest, G.; Alexander, A. Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 2006, 92, 5–22. [Google Scholar] [CrossRef]
- Statistica. Market Size of Carbon Nanotubes Worldwide from 2012 to 2022, by Application. 2022. Available online: https://www.statista.com/statistics/714708/carbon-nanotube-global-market-size-by-application/ (accessed on 19 January 2025).
- Statistica. Carbon Nanotube Market Value Worldwide in 2021 with a Forcast to 2030. 2022. Available online: https://www.statista.com/statistics/714463/global-market-value-of-carbon-nanotubes/ (accessed on 19 January 2025).
- Lam, C.W.; James, J.T.; McCluskey, R.; Arepalli, S.; Hunter, R.L. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit. Rev. Toxicol. 2006, 36, 189–217. [Google Scholar] [CrossRef] [PubMed]
- Stanton, M.F.; Wrench, C. Mechanisms of mesothelioma induction with asbestos and fibrous glass. J. Natl. Cancer Inst. 1972, 48, 797–821. [Google Scholar] [PubMed]
- Stanton, M.F. Editorial: Fiber carcinogenesis: Is asbestos the only hazard? J. Natl. Cancer Inst. 1974, 52, 633–634. [Google Scholar] [CrossRef] [PubMed]
- Harington, J.S. Fiber carcinogenesis: Epidemiologic observations and the Stanton hypothesis. J. Natl. Cancer Inst. 1981, 67, 977–989. [Google Scholar]
- Stanton, M.F.; Layard, M.; Tegeris, A.; Miller, E.; May, M.; Morgan, E.; Smith, A. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J. Natl. Cancer Inst. 1981, 67, 965–975. [Google Scholar]
- Pott, F.; Huth, F.; Friedrichs, K.H. Tumorigenic effect of fibrous dusts in experimental animals. Environ. Health Perspect. 1974, 9, 313–315. [Google Scholar] [CrossRef]
- Pott, F. Animal experiments on biological effects of mineral fibres. IARC Sci. Publ. 1980, 30, 261–272. [Google Scholar]
- Pott, F.; Dolgner, R.; Friedrichs, K.H.; Huth, F. The oncogenic effect of fibrous dust. Animal experiments and their relationship with human carcinogenesis. Ann. D’anatomie Pathol. 1976, 21, 237–246. [Google Scholar]
- Pott, F.; Friedrichs, K.H.; Huth, F. Results of animal experiments concerning the carcinogenic effect of fibrous dusts and their interpretation with regard to the carcinogenesis in humans (author’s transl). Zentralbl. Bakteriol. Orig. B 1976, 162, 467–505. [Google Scholar]
- Pott, F.; Huth, F.; Friedrichs, K. Results of animal carcinogenesis studies after application of fibrous glass and their implications regarding human exposure. In Proceedings of the Symposium—Occupational Exposure to Fibrous Glass, College Park, MD, USA, 26–27 June 1974; pp. 183–191. Available online: https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB258869.xhtml (accessed on 19 January 2025).
- Davis, J.M.; Addison, J.; Bolton, R.E.; Donaldson, K.; Jones, A.D.; Smith, T. The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br. J. Exp. Pathol. 1986, 67, 415–430. [Google Scholar] [PubMed]
- McDonald, J.C.; Armstrong, B.; Case, B.; Doell, D.; McCaughey, W.T.; McDonald, A.D.; Sebastien, P. Mesothelioma and asbestos fiber type. Evidence from lung tissue analyses. Cancer 1989, 63, 1544–1547. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, K.; Murphy, F.A.; Duffin, R.; Poland, C.A. Asbestos, carbon nanotubes and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 2010, 7, 5. [Google Scholar] [CrossRef]
- Donaldson, K.; Murphy, F.; Schinwald, A.; Duffin, R.; Poland, C.A. Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine 2011, 6, 143–156. [Google Scholar] [CrossRef] [PubMed]
- IARC. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. In Some Nanomaterials and Some Fibres; IARC Publication: Lyon, France, 2017. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Nanomaterials-And-Some-Fibres-2017 (accessed on 19 January 2025).
- Grosse, Y.; Loomis, D.; Guyton, K.Z.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; et al. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 2014, 15, 1427–1428. [Google Scholar] [CrossRef] [PubMed]
- Takagi, A.; Hirose, A.; Nishimura, T.; Fukumori, N.; Ogata, A.; Ohashi, N.; Kitajima, S.; Kanno, J. Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 2008, 33, 105–116. [Google Scholar] [CrossRef]
- Donaldson, K.; Stone, V.; Seaton, A.; Tran, L.; Aitken, R.; Poland, C. Re: Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 2008, 33, 385, author reply 386–388. [Google Scholar] [CrossRef]
- Ichihara, G.; Castranova, V.; Tanioka, A.; Miyazawa, K. Re: Induction of mesothelioma in p53+/− mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 2008, 33, 381–382, author reply 382–384. [Google Scholar] [CrossRef] [PubMed]
- Takagi, A.; Hirose, A.; Futakuchi, M.; Tsuda, H.; Kanno, J. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci. 2012, 103, 1440–1444. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Shi, Y.P.; Jones, S.N.; Vogel, H.; Bradley, A.; Pinkel, D.; Donehower, L.A. Retention of wild-type p53 in tumors from p53 heterozygous mice: Reduction of p53 dosage can promote cancer formation. EMBO J. 1998, 17, 4657–4667. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Nakae, D.; Fukumori, N.; Tayama, K.; Maekawa, A.; Imai, K.; Hirose, A.; Nishimura, T.; Ohashi, N.; Ogata, A. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J. Toxicol. Sci. 2009, 34, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Okazaki, Y.; Chew, S.H.; Misawa, N.; Yamashita, Y.; Akatsuka, S.; Ishihara, T.; Yamashita, K.; Yoshikawa, Y.; Yasui, H.; et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc. Natl. Acad. Sci. USA 2011, 108, E1330–E1338. [Google Scholar] [CrossRef] [PubMed]
- Aierken, D.; Okazaki, Y.; Chew, S.H.; Sakai, A.; Wang, Y.; Nagai, H.; Misawa, N.; Kohyama, N.; Toyokuni, S. Rat model demonstrates a high risk of tremolite but a low risk of anthophyllite for mesothelial carcinogenesis. Nagoya J. Med. Sci. 2014, 76, 149–160. [Google Scholar] [PubMed]
- Nagai, H.; Okazaki, Y.; Chew, S.H.; Misawa, N.; Miyata, Y.; Shinohara, H.; Toyokuni, S. Intraperitoneal administration of tangled multiwalled carbon nanotubes of 15 nm in diameter does not induce mesothelial carcinogenesis in rats. Pathol. Int. 2013, 63, 457–462. [Google Scholar] [CrossRef]
- Muller, J.; Delos, M.; Panin, N.; Rabolli, V.; Huaux, F.; Lison, D. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol. Sci. 2009, 110, 442–448. [Google Scholar] [CrossRef]
- Rittinghausen, S.; Hackbarth, A.; Creutzenberg, O.; Ernst, H.; Heinrich, U.; Leonhardt, A.; Schaudien, D. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part. Fibre Toxicol. 2014, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Hojo, M.; Kosugi, Y.; Watanabe, K.; Hirose, A.; Inomata, A.; Suzuki, T.; Nakae, D. Comparative study for carcinogenicity of 7 different multi-wall carbon nanotubes with different physicochemical characteristics by a single intraperitoneal injection in male Fischer 344 rats. J. Toxicol. Sci. 2018, 43, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Sargent, L.M.; Porter, D.W.; Staska, L.M.; Hubbs, A.F.; Lowry, D.T.; Battelli, L.; Siegrist, K.J.; Kashon, M.L.; Mercer, R.R.; Bauer, A.K.; et al. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part. Fibre Toxicol. 2014, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Ryman-Rasmussen, J.P.; Cesta, M.F.; Brody, A.R.; Shipley-Phillips, J.K.; Everitt, J.I.; Tewksbury, E.W.; Moss, O.R.; Wong, B.A.; Dodd, D.E.; Andersen, M.E.; et al. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat. Nanotechnol. 2009, 4, 747–751. [Google Scholar] [CrossRef]
- Murphy, F.A.; Poland, C.A.; Duffin, R.; Al-Jamal, K.T.; Ali-Boucetta, H.; Nunes, A.; Byrne, F.; Prina-Mello, A.; Volkov, Y.; Li, S.; et al. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am. J. Pathol. 2011, 178, 2587–2600. [Google Scholar] [CrossRef]
- Pairon, J.C.; Laurent, F.; Rinaldo, M.; Clin, B.; Andujar, P.; Ameille, J.; Brochard, P.; Chammings, S.; Ferretti, G.; Galateau-Salle, F.; et al. Pleural plaques and the risk of pleural mesothelioma. J. Natl. Cancer Inst. 2013, 105, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Rusch, V.W. A proposed new international TNM staging system for malignant pleural mesothelioma from the International Mesothelioma Interest Group. Lung Cancer 1996, 14, 1–12. [Google Scholar] [CrossRef]
- Tomashefski, J.F., Jr.; Farver, C.F. Anatomy and histology of the lung. In Dail and Hammar’s Pulmonary Pathology: Volume I: Nonneoplastic Lung Disease; Springer: Berlin/Heidelberg, Germany, 2008; pp. 20–48. [Google Scholar]
- Xu, J.; Futakuchi, M.; Shimizu, H.; Alexander, D.B.; Yanagihara, K.; Fukamachi, K.; Suzui, M.; Kanno, J.; Hirose, A.; Ogata, A.; et al. Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci. 2012, 103, 2045–2050. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.A.; Poland, C.A.; Duffin, R.; Donaldson, K. Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology 2013, 7, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Alexander, D.B.; Futakuchi, M.; Numano, T.; Fukamachi, K.; Suzui, M.; Omori, T.; Kanno, J.; Hirose, A.; Tsuda, H. Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes. Cancer Sci. 2014, 105, 763–769. [Google Scholar] [CrossRef]
- Kobayashi, N.; Naya, M.; Ema, M.; Endoh, S.; Maru, J.; Mizuno, K.; Nakanishi, J. Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology 2010, 276, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Aiso, S.; Yamazaki, K.; Umeda, Y.; Asakura, M.; Kasai, T.; Takaya, M.; Toya, T.; Koda, S.; Nagano, K.; Arito, H.; et al. Pulmonary toxicity of intratracheally instilled multiwall carbon nanotubes in male Fischer 344 rats. Ind. Health 2010, 48, 783–795. [Google Scholar] [CrossRef]
- Porter, D.W.; Hubbs, A.F.; Mercer, R.R.; Wu, N.; Wolfarth, M.G.; Sriram, K.; Leonard, S.; Battelli, L.; Schwegler-Berry, D.; Friend, S.; et al. Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 2010, 269, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, Y.; Hirohashi, M.; Ogami, A.; Oyabu, T.; Myojo, T.; Todoroki, M.; Yamamoto, M.; Hashiba, M.; Mizuguchi, Y.; Lee, B.W.; et al. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology 2012, 6, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Fenoglio, I.; Aldieri, E.; Gazzano, E.; Cesano, F.; Colonna, M.; Scarano, D.; Mazzucco, G.; Attanasio, A.; Yakoub, Y.; Lison, D.; et al. Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem. Res. Toxicol. 2012, 25, 74–82. [Google Scholar] [CrossRef]
- Poulsen, S.S.; Saber, A.T.; Williams, A.; Andersen, O.; Kobler, C.; Atluri, R.; Pozzebon, M.E.; Mucelli, S.P.; Simion, M.; Rickerby, D.; et al. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol. Appl. Pharmacol. 2015, 284, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Muller, J.; Huaux, F.; Moreau, N.; Misson, P.; Heilier, J.F.; Delos, M.; Arras, M.; Fonseca, A.; Nagy, J.B.; Lison, D. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 2005, 207, 221–231. [Google Scholar] [CrossRef]
- Ronzani, C.; Spiegelhalter, C.; Vonesch, J.L.; Lebeau, L.; Pons, F. Lung deposition and toxicological responses evoked by multi-walled carbon nanotubes dispersed in a synthetic lung surfactant in the mouse. Arch. Toxicol. 2012, 86, 137–149. [Google Scholar] [CrossRef]
- Poulsen, S.S.; Jackson, P.; Kling, K.; Knudsen, K.B.; Skaug, V.; Kyjovska, Z.O.; Thomsen, B.L.; Clausen, P.A.; Atluri, R.; Berthing, T.; et al. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology 2016, 10, 1263–1275. [Google Scholar] [CrossRef]
- Han, S.G.; Andrews, R.; Gairola, C.G. Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhal. Toxicol. 2010, 22, 340–347. [Google Scholar] [CrossRef]
- Ellinger-Ziegelbauer, H.; Pauluhn, J. Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes) relative to alpha-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period. Toxicology 2009, 266, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Pauluhn, J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: Toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol. Sci. 2010, 113, 226–242. [Google Scholar] [CrossRef] [PubMed]
- Ma-Hock, L.; Treumann, S.; Strauss, V.; Brill, S.; Luizi, F.; Mertler, M.; Wiench, K.; Gamer, A.O.; van Ravenzwaay, B.; Landsiedel, R. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol. Sci. 2009, 112, 468–481. [Google Scholar] [CrossRef]
- Kasai, T.; Fukushima, S. Exposure of Rats to Multi-Walled Carbon Nanotubes: Correlation of Inhalation Exposure to Lung Burden, Bronchoalveolar Lavage Fluid Findings, and Lung Morphology. Nanomaterials 2023, 13, 2598. [Google Scholar] [CrossRef]
- Mitchell, L.A.; Gao, J.; Wal, R.V.; Gigliotti, A.; Burchiel, S.W.; McDonald, J.D. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol. Sci. 2007, 100, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Ma-Hock, L.; Strauss, V.; Treumann, S.; Kuttler, K.; Wohlleben, W.; Hofmann, T.; Groters, S.; Wiench, K.; van Ravenzwaay, B.; Landsiedel, R. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part. Fibre Toxicol. 2013, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Pothmann, D.; Simar, S.; Schuler, D.; Dony, E.; Gaering, S.; Le Net, J.L.; Okazaki, Y.; Chabagno, J.M.; Bessibes, C.; Beausoleil, J.; et al. Lung inflammation and lack of genotoxicity in the comet and micronucleus assays of industrial multiwalled carbon nanotubes Graphistrength((c)) C100 after a 90-day nose-only inhalation exposure of rats. Part. Fibre Toxicol. 2015, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Jo, M.S.; Kim, Y.; Kim, T.G.; Shin, J.H.; Kim, B.W.; Kim, H.P.; Lee, H.K.; Kim, H.S.; Ahn, K.; et al. 28-Day inhalation toxicity study with evaluation of lung deposition and retention of tangled multi-walled carbon nanotubes. Nanotoxicology 2020, 14, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Kasai, T.; Umeda, Y.; Ohnishi, M.; Mine, T.; Kondo, H.; Takeuchi, T.; Matsumoto, M.; Fukushima, S. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part. Fibre Toxicol. 2016, 13, 53. [Google Scholar] [CrossRef] [PubMed]
- Numano, T.; Higuchi, H.; Alexander, D.B.; Alexander, W.T.; Abdelgied, M.; El-Gazzar, A.M.; Saleh, D.; Takase, H.; Hirose, A.; Naiki-Ito, A.; et al. MWCNT-7 administered to the lung by intratracheal instillation induces development of pleural mesothelioma in F344 rats. Cancer Sci. 2019, 110, 2485–2492. [Google Scholar] [CrossRef] [PubMed]
- Hojo, M.; Maeno, A.; Sakamoto, Y.; Ohnuki, A.; Tada, Y.; Yamamoto, Y.; Ikushima, K.; Inaba, R.; Suzuki, J.; Taquahashi, Y.; et al. Two-year intermittent exposure of a multiwalled carbon nanotube by intratracheal instillation induces lung tumors and pleural mesotheliomas in F344 rats. Part. Fibre Toxicol. 2022, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Suzui, M.; Futakuchi, M.; Fukamachi, K.; Numano, T.; Abdelgied, M.; Takahashi, S.; Ohnishi, M.; Omori, T.; Tsuruoka, S.; Hirose, A.; et al. Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors. Cancer Sci. 2016, 107, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Saleh, D.M.; Alexander, W.T.; Numano, T.; Ahmed, O.H.M.; Gunasekaran, S.; Alexander, D.B.; Abdelgied, M.; El-Gazzar, A.M.; Takase, H.; Xu, J.; et al. Comparative carcinogenicity study of a thick, straight-type and a thin, tangled-type multi-walled carbon nanotube administered by intra-tracheal instillation in the rat. Part. Fibre Toxicol. 2020, 17, 48. [Google Scholar] [CrossRef] [PubMed]
- Miserocchi, G.; Sancini, G.; Mantegazza, F.; Chiappino, G. Translocation pathways for inhaled asbestos fibers. Environ. Health 2008, 7, 4. [Google Scholar] [CrossRef]
- Saleh, D.M.; Luo, S.; Ahmed, O.H.M.; Alexander, D.B.; Alexander, W.T.; Gunasekaran, S.; El-Gazzar, A.M.; Abdelgied, M.; Numano, T.; Takase, H.; et al. Assessment of the toxicity and carcinogenicity of double-walled carbon nanotubes in the rat lung after intratracheal instillation: A two-year study. Part. Fibre Toxicol. 2022, 19, 30. [Google Scholar] [CrossRef]
- El-Gazzar, A.M.; Abdelgied, M.; Alexander, D.B.; Alexander, W.T.; Numano, T.; Iigo, M.; Naiki, A.; Takahashi, S.; Takase, H.; Hirose, A.; et al. Comparative pulmonary toxicity of a DWCNT and MWCNT-7 in rats. Arch. Toxicol. 2019, 93, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Rivera, Z.; Jube, S.; Nasu, M.; Bertino, P.; Goparaju, C.; Franzoso, G.; Lotze, M.T.; Krausz, T.; Pass, H.I.; et al. Programmed necrosis induced by asbestos in human mesothelial cells causes high–mobility group box 1 protein release and resultant inflammation. Proc. Natl. Acad. Sci. USA 2010, 107, 12611–12616. [Google Scholar] [CrossRef] [PubMed]
- Bergamaschi, E.; Garzaro, G.; Wilson Jones, G.; Buglisi, M.; Caniglia, M.; Godono, A.; Bosio, D.; Fenoglio, I.; Guseva Canu, I. Occupational Exposure to Carbon Nanotubes and Carbon Nanofibres: More Than a Cobweb. Nanomaterials 2021, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Hojo, M.; Maeno, A.; Sakamoto, Y.; Yamamoto, Y.; Taquahashi, Y.; Hirose, A.; Suzuki, J.; Inomata, A.; Nakae, D. Time-Course of Transcriptomic Change in the Lungs of F344 Rats Repeatedly Exposed to a Multiwalled Carbon Nanotube in a 2-Year Test. Nanomaterials 2023, 13, 2105. [Google Scholar] [CrossRef]
- Heller, D.A.; Jena, P.V.; Pasquali, M.; Kostarelos, K.; Delogu, L.G.; Meidl, R.E.; Rotkin, S.V.; Scheinberg, D.A.; Schwartz, R.E.; Terrones, M.; et al. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat. Nanotechnol. 2020, 15, 164–166. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, O.H.M.; Naiki-Ito, A.; Takahashi, S.; Alexander, W.T.; Alexander, D.B.; Tsuda, H. A Review of the Carcinogenic Potential of Thick Rigid and Thin Flexible Multi-Walled Carbon Nanotubes in the Lung. Nanomaterials 2025, 15, 168. https://doi.org/10.3390/nano15030168
Ahmed OHM, Naiki-Ito A, Takahashi S, Alexander WT, Alexander DB, Tsuda H. A Review of the Carcinogenic Potential of Thick Rigid and Thin Flexible Multi-Walled Carbon Nanotubes in the Lung. Nanomaterials. 2025; 15(3):168. https://doi.org/10.3390/nano15030168
Chicago/Turabian StyleAhmed, Omnia Hosny Mohamed, Aya Naiki-Ito, Satoru Takahashi, William T. Alexander, David B. Alexander, and Hiroyuki Tsuda. 2025. "A Review of the Carcinogenic Potential of Thick Rigid and Thin Flexible Multi-Walled Carbon Nanotubes in the Lung" Nanomaterials 15, no. 3: 168. https://doi.org/10.3390/nano15030168
APA StyleAhmed, O. H. M., Naiki-Ito, A., Takahashi, S., Alexander, W. T., Alexander, D. B., & Tsuda, H. (2025). A Review of the Carcinogenic Potential of Thick Rigid and Thin Flexible Multi-Walled Carbon Nanotubes in the Lung. Nanomaterials, 15(3), 168. https://doi.org/10.3390/nano15030168