Improving the Oxygen Evolution Reaction Performance of Ternary Layered Double Hydroxides by Tuning All Three Cations’ Electronic Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Methods
2.3. Characterization Section
2.4. Electrocatalytic Measurements
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jorgenson, A.; Longhofer, W.; Grant, D. Disproportionality in Power Plants’ Carbon Emissions: A Cross-National Study. Sci. Rep. 2016, 6, 28661. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, B.; Bashir, I.; Rauf, A. CuS/NiFe-LDH/NF as a Bifunctional Electrocatalyst for Hydrogen Evolution (HER) and Oxygen Evolution Reactions (OER). Fuel 2023, 337, 127253. [Google Scholar] [CrossRef]
- Tollefson, J. Hydrogen Vehicles: Fuel of the Future? Nature 2010, 464, 1262–1264. [Google Scholar] [CrossRef]
- You, B.; Sun, Y. Innovative Strategies for Electrocatalytic Water Splitting. Acc. Chem. Res. 2018, 51, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Q.; Feng, X. Support and Interface Effects in Water-Splitting Electrocatalysts. Adv. Mater. 2019, 31, 1808167. [Google Scholar] [CrossRef] [PubMed]
- Jansi Rani, B.; Dhivya, N.; Ravi, G.; Zance, S.S.; Yuvakkumar, R.; Hong, S.I. Electrochemical Performance of β-Nis@Ni(OH)2 Nanocomposite for Water Splitting Applications. ACS Omega 2019, 4, 10302–10310. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Zhou, M.; Zhou, Y.; Zeng, X. First-Row Transition Metal Based Catalysts for the Oxygen Evolution Reaction under Alkaline Conditions: Basic Principles and Recent Advances. Small 2017, 13, 1701931. [Google Scholar] [CrossRef]
- Lokesh, S.; Srivastava, R. CuAl Layered Double Hydroxide as a Highly Efficient Electrocatalyst for the Electrolysis of Water into Hydrogen and Oxygen Fuels. Int. J. Hydrogen Energy 2023, 48, 35–50. [Google Scholar] [CrossRef]
- Nyongombe, G.; Kabongo, G.L.; Bello, I.T.; Noto, L.L.; Dhlamini, M.S. The Impact of Drying Temperature on the Crystalline Domain and the Electrochemical Performance of NiCoAl-LDH. Energy Rep. 2022, 8, 1151–1158. [Google Scholar] [CrossRef]
- Nyongombe, G.; Kabongo, G.L.; Noto, L.L.; Dhlamini, M.S. Investigating the Impact of the Washing Steps of Layered Double Hydroxides (LDH) on the Electrochemical Performance. Nanomaterials 2022, 12, 578. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Wang, Y.; Li, J.; Kalytchuk, S.; Susha, A.S.; Kershaw, S.V.; Yan, F.; Rogach, A.L.; Chen, X. Highly Luminescent Covalently Bonded Layered Double Hydroxide-Fluorescent Dye Nanohybrids. J. Mater. Chem. C 2014, 2, 4490–4494. [Google Scholar] [CrossRef]
- de Sousa, A.L.M.D.; dos Santos, W.M.; de Souza, M.L.; Silva, L.C.P.B.B.; Yun, A.E.H.K.; Aguilera, C.S.B.; Chagas, B.d.F.; Rolim, L.A.; da Silva, R.M.F.; Neto, P.J.R. Layered Double Hydroxides as Promising Excipients for Drug Delivery Purposes. Eur. J. Pharm. Sci. 2021, 165, 105922. [Google Scholar] [CrossRef]
- Tcheumi, H.L.; Kameni Wendji, A.P.; Tonle, I.K.; Ngameni, E. A Low-Cost Layered Double Hydroxide (LDH) Based Amperometric Sensor for the Detection of Isoproturon in Water Using Carbon Paste Modified Electrode. J. Anal. Methods Chem. 2020, 2020, 8068137. [Google Scholar] [CrossRef]
- Kesavan Pillai, S.; Kleyi, P.; de Beer, M.; Mudaly, P. Layered Double Hydroxides: An Advanced Encapsulation and Delivery System for Cosmetic Ingredients-an Overview. Appl. Clay Sci. 2020, 199, 105868. [Google Scholar] [CrossRef]
- Nyongombe, G.E.; Kabongo, G.L.; Noto, L.L.; Dhlamini, M.S. Up-Scalable Synthesis of Highly Crystalline Electroactive Ni-Co LDH Nanosheets for Supercapacitor Applications. Int. J. Electrochem. Sci. 2020, 15, 4494–4502. [Google Scholar] [CrossRef]
- Zhang, R.; Xue, Z.; Qin, J.; Sawangphruk, M.; Zhang, X.; Liu, R. NiCo-LDH/Ti3C2 MXene Hybrid Materials for Lithium Ion Battery with High-Rate Capability and Long Cycle Life. J. Energy Chem. 2020, 50, 143–153. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Martins, P.R.; Angnes, L.; Araki, K. Recent Advances in Ternary Layered Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. New J. Chem. 2020, 44, 9981–9997. [Google Scholar] [CrossRef]
- Park, Y.S.; Jeong, J.Y.; Jang, M.J.; Kwon, C.Y.; Kim, G.H.; Jeong, J.; Lee, J.-H.; Lee, J.; Choi, S.M. Ternary Layered Double Hydroxide Oxygen Evolution Reaction Electrocatalyst for Anion Exchange Membrane Alkaline Seawater Electrolysis. J. Energy Chem. 2022, 75, 127–134. [Google Scholar] [CrossRef]
- Myeong, S.W.; Jin, S.; Kim, C.; Lee, J.; Kim, Y.; Choi, S.M. Development of Ternary Layered Double Hydroxide Oxygen Evolution Reaction Electrocatalyst for Anion Exchange Membrane Water Electrolysis. J. Korean Inst. Met. Mater. 2024, 62, 472–479. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, Z.; Li, S.; Li, Y.; Tan, G.; Hao, Y.; Wang, Y.; Huang, Y.; Zhang, X.; Li, S.; et al. High-Performance Ternary NiCoMo Electrocatalyst with Three-Dimensional Nanosheets Array Structure. Nanomaterials 2022, 12, 3716. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Zhang, Y.; Wang, X.; Chen, H.; Li, S.; Zhang, W.; Hu, Y.; Li, F.; Li, D.; Yang, D. Electronic Structure Regulation of Nickel-Iron Layered Double Hydroxides by Tuning Ternary Component for Overall Water Splitting. Mater. Today Sustain. 2023, 21, 100295. [Google Scholar] [CrossRef]
- Zhou, D.; Cai, Z.; Jia, Y.; Xiong, X.; Xie, Q.; Wang, S.; Zhang, Y.; Liu, W.; Duan, H.; Sun, X. Activating Basal Plane in NiFe Layered Double Hydroxide by Mn2+ Doping for Efficient and Durable Oxygen Evolution Reaction. Nanoscale Horiz. 2018, 3, 532–537. [Google Scholar] [CrossRef]
- Jiang, J.; Sun, F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J.; Jiang, Z.; Zhao, J.; Li, J.; Yan, W.; et al. Atomic-Level Insight into Super-Efficient Electrocatalytic Oxygen Evolution on Iron and Vanadium Co-Doped Nickel (Oxy)Hydroxide. Nat. Commun. 2018, 9, 2885. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, P.; Li, M.; Li, Y.; Zhang, X.; Chen, J.; Fang, X.; Liu, Y.; Yuan, X.; Dai, X.; et al. Interfacial Synergy between Dispersed Ru Sub-Nanoclusters and Porous NiFe Layered Double Hydroxide on Accelerated Overall Water Splitting by Intermediate Modulation. Nanoscale 2020, 12, 9669–9679. [Google Scholar] [CrossRef]
- Dang Van, C.; Kim, S.; Kim, M.; Lee, M.H. Effect of Rare-Earth Element Doping on NiFe-Layered Double Hydroxides for Water Oxidation at Ultrahigh Current Densities. ACS Sustain. Chem. Eng. 2023, 11, 1333–1343. [Google Scholar] [CrossRef]
- Li, L.; Dai, Y.; Xu, Q.; Zhang, B.; Zhang, F.; You, Y.; Ma, D.; Li, S.S.; Zhang, Y.X. Interlayer Expanded Nickel-Iron Layered Double Hydroxide by Intercalation with Sodium Dodecyl Sulfate for Enhanced Oxygen Evolution Reaction. J. Alloys Compd. 2021, 882, 160752. [Google Scholar] [CrossRef]
- Moyo, L.; Focke, W.W.; Labuschagne, F.J.W.J.; Verryn, S. Layered Double Hydroxide Intercalated with Sodium Dodecyl Sulfate. Mol. Cryst. Liq. Cryst. 2012, 555, 51–64. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, W.; Yan, X.; Huang, X.; Wu, S.; Pan, J.; Shahnavaz, Z.; Li, T.; Yu, X. Sodium Dodecyl Sulfate Intercalated Two-Dimensional Nickel-Cobalt Layered Double Hydroxides to Synthesize Multifunctional Nanomaterials for Supercapacitors and Electrocatalytic Hydrogen Evolution. Fuel 2023, 333, 126323. [Google Scholar] [CrossRef]
- Tang, Z.; Qiu, Z.; Lu, S.; Shi, X. Functionalized Layered Double Hydroxide Applied to Heavy Metal Ions Absorption: A Review. Nanotechnol. Rev. 2020, 9, 800–819. [Google Scholar] [CrossRef]
- Nyongombe, G.; Bello, I.T.; Otun, K.O.; Kabongo, G.L.; Mothudi, B.M.; Noto, L.; Dhlamini, M.S. Unveiling the Benefits of Dimethyl Sulfoxide as a Binder Solvent on the Electrochemical Performance of Layered Double Hydroxides. Electrochim. Acta 2022, 419, 140386. [Google Scholar] [CrossRef]
- Silva Neto, L.D.; Anchieta, C.G.; Duarte, J.L.S.; Meili, L.; Freire, J.T. Effect of Drying on the Fabrication of MgAl Layered Double Hydroxides. ACS Omega 2021, 6, 21819–21829. [Google Scholar] [CrossRef]
- Oer, N.L.; Tyndall, D.; Craig, J.; Gannon, L.; Mcguinness, C.; Mcevoy, N.; Roy, A.; Garc, M.; Browne, P.; Nicolosi, V. Demonstrating the Source of Inherent Instability in NiFe LDH-Based OER Electrocatalysts. J. Mater. Chem. A 2023, 11, 4067–4077. [Google Scholar] [CrossRef]
- Munonde, T.S.; Zheng, H. Ultrasonics Sonochemistry the Impact of Ultrasonic Parameters on the Exfoliation of NiFe LDH Nanosheets as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Media. Ultrason. Sonochem. 2021, 76, 105664. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Dong, Z.H.; Wang, Z.G.; Zhang, F.X.; Jin, J. Layered α-Co(OH)2 Nanocones as Electrode Materials for Pseudocapacitors: Understanding the Effect of Interlayer Space on Electrochemical Activity. Adv. Funct. Mater. 2013, 23, 2758–2764. [Google Scholar] [CrossRef]
- Yang, C.; Wöll, C. IR Spectroscopy Applied to Metal Oxide Surfaces: Adsorbate Vibrations and Beyond. Adv. Phys. X 2017, 2, 373–408. [Google Scholar] [CrossRef]
- Wei, T.Y.; Chen, C.H.; Chien, H.C.; Lu, S.Y.; Hu, C.C. A Cost-Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide-Driven Sol-Gel Process. Adv. Mater. 2010, 22, 347–351. [Google Scholar] [CrossRef]
- Sekar, S.; Kim, D.Y.; Lee, S. Excellent Oxygen Evolution Reaction of Activated Carbon-Anchored Nio Nanotablets Prepared by Green Routes. Nanomaterials 2020, 10, 1382. [Google Scholar] [CrossRef] [PubMed]
- Stoerzinger, K.A.; Rao, R.R.; Wang, X.R.; Hong, W.T.; Rouleau, C.M.; Shao-Horn, Y. The Role of Ru Redox in PH-Dependent Oxygen Evolution on Rutile Ruthenium Dioxide Surfaces. Chem 2017, 2, 668–675. [Google Scholar] [CrossRef]
- Gao, Y.; Xiong, T.; Li, Y.; Huang, Y.; Li, Y.; Balogun, M.S.J.T. A Simple and Scalable Approach to Remarkably Boost the Overall Water Splitting Activity of Stainless Steel Electrocatalysts. ACS Omega 2019, 4, 16130–16138. [Google Scholar] [CrossRef]
- Alves, D.; Moral, R.A.; Jayakumari, D.; Dempsey, E.; Breslin, C.B. Factorial Optimization of CoCuFe-LDH/Graphene Ternary Composites as Electrocatalysts for Water Splitting. ACS Appl. Mater. Interfaces 2024, 16, 50846–50858. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xu, W.; Wang, H. Ternary NiCoFe Layered Double Hydroxide Nanosheets Synthesized by Cation Exchange Reaction for Oxygen Evolution Reaction. Electrochim. Acta 2017, 257, 118–127. [Google Scholar] [CrossRef]
- Nejati, K.; Foruzin, L.J. High Efficiency Water Oxidation Using NiAlFe-Layered Double Hydroxides. Commun. Catal. 2024, 2, 1–7. [Google Scholar] [CrossRef]
- Hao, S.; Zheng, G.; Gao, S.; Qiu, L.; Xu, N.; He, Y.; Lei, L.; Zhang, X. In Situ Synthesis of Ternary NiCoRu-Based Layered Double Hydroxide by Chlorine Corrosion toward Electrocatalytic Water Oxidation. ACS Sustain. Chem. Eng. 2019, 7, 14361–14367. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, Q.; Zhu, Y.; Du, Y.; Yang, W.; Chen, Y.; Li, Y.; Wang, S. NiFeMn-Layered Double Hydroxides Linked by Graphene as High-Performance Electrocatalysts for Oxygen Evolution Reaction. Nanomaterials 2022, 12, 2200. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Sabouni, H.; Hamdan, N.M. In-Situ Grown Ternary Metal Hydroxides@3D Oriented Crumpled V2C MXene Sheets for Improved Electrocatalytic Oxygen Evolution Reaction. Heliyon 2024, 10, e35643. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Zhao, W.; Lu, X.; Oluigbo, C.J.; Shah, S.A.; Zhang, M.; Xie, J.; Xu, Y. In Situ Growth of M-MO (M = Ni, Co) in 3D Graphene as a Competent Bifunctional Electrocatalyst for OER and HER. Electrochim. Acta 2019, 298, 163–171. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Sayed Afiuni, S.A.; Rezaei, B. NiO Nanoparticles Decorated at Nile Blue-Modified Reduced Graphene Oxide, New Powerful Electrocatalysts for Water Splitting. J. Electroanal. Chem. 2018, 816, 160–170. [Google Scholar] [CrossRef]
- Zhang, H.; Du, X.; Zhang, X.; Wang, Y. Controlled Synthesis of NiCoP@NiM LDH (M = Cu, Fe, Co) as Efficient Hydrogen Evolution Reaction Electrocatalyst. J. Alloys Compd. 2023, 937, 168412. [Google Scholar] [CrossRef]
- Nyongombe, G.; Kabongo, G.L.; Noto, L.L.; Dhlamini, M.S. Advantage of Dimethyl Sulfoxide in the Fabrication of Binder-Free Layered Double Hydroxides Electrodes: Impacts of Physical Parameters on the Crystalline Domain and Electrochemical Performance. Int. J. Mol. Sci. 2022, 23, 10192. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.M.; Pawar, B.S.; Hou, B.; Kim, J.; Aqueel Ahmed, A.T.; Chavan, H.S.; Jo, Y.; Cho, S.; Inamdar, A.I.; Gunjakar, J.L.; et al. Self-Assembled Two-Dimensional Copper Oxide Nanosheet Bundles as an Efficient Oxygen Evolution Reaction (OER) Electrocatalyst for Water Splitting Applications. J. Mater. Chem. A 2017, 5, 12747–12751. [Google Scholar] [CrossRef]
- Oliver Jan, F.L.P.R. Ethylene Oligomerization over Nickel. Fuel Process. Technol. 2018, 179, 269–276. [Google Scholar]
- Liu, D.; Li, D.; Yang, D. Size-Dependent Magnetic Properties of Branchlike Nickel Oxide Nanocrystals. AIP Adv. 2017, 7, 015028. [Google Scholar] [CrossRef]
- Omran, M.; Fabritius, T.; Elmahdy, A.M.; Abdel-Khalek, N.A.; El-Aref, M.; Elmanawi, A.E.H. XPS and FTIR Spectroscopic Study on Microwave Treated High Phosphorus Iron Ore. Appl. Surf. Sci. 2015, 345, 127–140. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Mei, Y.; Le, T. ScienceDirect NiFe Layered Double Hydroxide as an Efficient Bifunctional Catalyst for Electrosynthesis of Hydrogen Peroxide and Oxygen. Int. J. Hydrogen Energy 2022, 47, 36831–36842. [Google Scholar] [CrossRef]
- Wang, Y.; Tao, S.; Lin, H.; Wang, G.; Zhao, K.; Cai, R.; Tao, K.; Zhang, C.; Sun, M.; Hu, J.; et al. Nano Energy Atomically Targeting NiFe LDH to Create Multivacancies for OER Catalysis with a Small Organic Anchor. Nano Energy 2021, 81, 105606. [Google Scholar] [CrossRef]
- Sydorchuk, V.; Poddubnaya, O.I.; Tsyba, M.M.; Zakutevskyy, O.; Khyzhun, O.; Khalameida, S. Applied Surface Science Photocatalytic Degradation of Dyes Using Phosphorus-Containing Activated Carbons. Appl. Surf. Sci. 2021, 535, 147667. [Google Scholar] [CrossRef]
- Sivkov, D.V.; Petrova, O.V.; Nekipelov, S.V.; Vinogradov, A.S.; Skandakov, R.N.; Bakina, K.A.; Isaenko, S.I.; Ob, A.M.; Kaverin, B.S.; Vilkov, I.V.; et al. Applied Sciences Quantitative Characterization of Oxygen-Containing Groups on the Surface of Carbon Materials: XPS and NEXAFS Study. Appl. Sci. 2022, 12, 7744. [Google Scholar] [CrossRef]
- Idriss, H. On the Wrong Assignment of the XPS O1s Signal at 531–532 EV Attributed to Oxygen Vacancies in Photo- and Electro-Catalysts for Water Splitting and Other Materials Applications. Surf. Sci. 2021, 712, 121894. [Google Scholar] [CrossRef]
- Schiros, T.; Andersson, K.J.; Pettersson, L.G.M.; Nilsson, A.; Ogasawara, H. Chemical Bonding of Water to Metal Surfaces Studied with Core-Level Spectroscopies. J. Electron Spectrosc. Relat. Phenom. 2010, 177, 85–98. [Google Scholar] [CrossRef]
- Deng, X.; Herranz, T.; Weis, C.; Bluhm, H.; Salmeron, M. Adsorption of Water on Cu2O and Al2O3 Thin Films. J. Phys. Chem. C 2008, 112, 9668–9672. [Google Scholar] [CrossRef]
Samples | Surface Area (m2g−1) | Pore Size (nm) | Pore Volume (cm2g−1) |
---|---|---|---|
NiFe-LDH | 143.69 | 9.20 | 0.33 |
NiFe-La-LDH | 184.95 | 7.78 | 0.36 |
NiFe-La-SDS-LDH | 417.15 | 10.50 | 1.09 |
Electrocatalysts | Overpotential | Current Density | References |
---|---|---|---|
NiFeCo-LDH | 253 mV | 10 mA cm−2 | [40] |
CoCuFe-LDH/Graphene | 350 mV | 10 mA cm−2 | [41] |
NiFeCo-LDH | 249 mV | 10 mA cm−2 | [19] |
NiCoFe-LDH/CFC | 240 mV | 10 mA cm−2 | [42] |
Ternary NiCoMo | 270 mV | 10 mA cm−2 | [21] |
NiAlFe-LDH | 236 mV | 0.7 mA cm−2 | [43] |
NiCoRu-LDH | 270 mV | 100 mA cm−2 | [44] |
NiFeMn-LDH | 338 mV | 10 mA cm−2 | [45] |
NiFeCr@3D V2C-MX | 410 mV | 200 mA cm−2 | [46] |
NiFeZn-LDH | 236 mV | 50 mA cm−2 | [22] |
NiFe-La-SDS-LDH | 230 mV | 10 mA cm−2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyongombe, G.; Maaza, M.; Siaj, M.; Dhlamini, S. Improving the Oxygen Evolution Reaction Performance of Ternary Layered Double Hydroxides by Tuning All Three Cations’ Electronic Structures. Nanomaterials 2025, 15, 177. https://doi.org/10.3390/nano15030177
Nyongombe G, Maaza M, Siaj M, Dhlamini S. Improving the Oxygen Evolution Reaction Performance of Ternary Layered Double Hydroxides by Tuning All Three Cations’ Electronic Structures. Nanomaterials. 2025; 15(3):177. https://doi.org/10.3390/nano15030177
Chicago/Turabian StyleNyongombe, Gayi, Malik Maaza, Mohamed Siaj, and Simon Dhlamini. 2025. "Improving the Oxygen Evolution Reaction Performance of Ternary Layered Double Hydroxides by Tuning All Three Cations’ Electronic Structures" Nanomaterials 15, no. 3: 177. https://doi.org/10.3390/nano15030177
APA StyleNyongombe, G., Maaza, M., Siaj, M., & Dhlamini, S. (2025). Improving the Oxygen Evolution Reaction Performance of Ternary Layered Double Hydroxides by Tuning All Three Cations’ Electronic Structures. Nanomaterials, 15(3), 177. https://doi.org/10.3390/nano15030177