Giant Vortex Dichroism in Simplified-Chiral-Double-Elliptical Metamaterials
Abstract
:1. Introduction
2. Structure Design
3. Results
3.1. Reflection and VD Analyses
3.2. Structure Optimization for Giant VD
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bonner, W.A. The Origin and Amplification of Biomolecular Chirality. Orig. Life Evol. Biosph. 1991, 21, 59–111. [Google Scholar] [CrossRef]
- Raghu, S.; Haldane, F.D.M. Analogs of Quantum-Hall-Effect Edge States in Photonic Crystals. Phys. Rev. A 2008, 78, 033834. [Google Scholar] [CrossRef]
- Luisi, P.L. The Emergence of Life: From Chemical Origins to Synthetic Biology; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Chen, W.; Bian, A.; Agarwal, A.; Liu, L.; Shen, H.; Wang, L.; Xu, C.; Kotov, N.A. Nanoparticle Superstructures Made by Polymerase Chain Reaction: Collective Interactions of Nanoparticles and a New Principle for Chiral Materials. Nano Lett. 2009, 9, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, M.; Schaf, M. Three-Dimensional Chiral Plasmonic Oligomers. Nano Lett. 2012, 12, 2542–2547. [Google Scholar] [CrossRef]
- Ðorđević, L.; Arcudi, F.; D’Urso, A.; Cacioppo, M.; Micali, N.; Bürgi, T.; Purrello, R.; Prato, M. Design Principles of Chiral Carbon Nanodots Help Convey Chirality from Molecular to Nanoscale Level. Nat. Commun. 2018, 9, 3442. [Google Scholar] [CrossRef]
- Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.-M.; Högele, A.; Simmel, F.C.; Govorov, A.O.; Liedl, T. DNA-Based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature 2012, 483, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Valev, V.K.; Baumberg, J.J.; Sibilia, C.; Verbiest, T. Chirality and Chiroptical Effects in Plasmonic Nanostructures: Fundamentals, Recent Progress, and Outlook. Adv. Mater. 2013, 25, 2517–2534. [Google Scholar] [CrossRef]
- Davis, M.S.; Zhu, W.; Lee, J.K.; Lezec, H.J.; Agrawal, A. Microscopic Origin of the Chiroptical Response of Optical Media. Sci. Adv. 2019, 5, eaav8262. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Peng, K.; Cui, Y.; Zhong, J.; Zhang, H.; Jiang, Y. Design and simulation of a GST-based metasurface with strong and switchable circular dichroism. Opt. Lett. 2022, 47, 1907–1910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Peng, K.; Jiang, H.; Li, W.; Zhao, W. Multifunctional Metasurfaces for Switchable Polarization Selectivity and Absorption. Opt. Express 2022, 30, 20554. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Gao, L.; Gao, W.; Ge, C.; Du, X.; Li, Z.; Yang, Y.; Niu, G.; Tang, J. Circularly Polarized Light Detection Using Chiral Hybrid Perovskite. Nat. Commun. 2019, 10, 1927. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Peng, K.; Cui, Y.; Xie, Z.; Zhang, H.; Jiang, Y.; Zhao, W.; Yuan, X. Giant and Reversible Circular Dichroism Based on Phase Change Materials for Near-Field Image Display. J. Opt. 2023, 25, 065101. [Google Scholar] [CrossRef]
- Djordjevic, I.B. Deep-Space and near-Earth Optical Communications by Coded Orbital Angular Momentum (OAM) Modulation. Opt. Express 2011, 19, 14277. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Wang, C.; Zhang, C.; Hu, Y.; Yang, L.; Lao, Z.; Xu, B.; Li, J.; Wu, D.; Chu, J. Three-Dimensional Chiral Microstructures Fabricated by Structured Optical Vortices in Isotropic Material. Light Sci. Appl. 2017, 6, e17011. [Google Scholar] [CrossRef]
- Liu, S.; Ni, J.; Zhang, C.; Wang, X.; Cao, Y.; Wang, D.; Ji, S.; Pan, D.; Li, R.; Wu, H.; et al. Tailoring Optical Vortical Dichroism with Stereometamaterials. Laser Photonics Rev. 2022, 16, 2100518. [Google Scholar] [CrossRef]
- Kong, X.; Besteiro, L.V.; Wang, Z.; Govorov, A.O. Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress. Adv. Mater. 2020, 32, 1801790. [Google Scholar] [CrossRef]
- Rouxel, J.R.; Rösner, B.; Karpov, D.; Bacellar, C.; Mancini, G.F.; Zinna, F.; Kinschel, D.; Cannelli, O.; Oppermann, M.; Svetina, C.; et al. Hard X-Ray Helical Dichroism of Disordered Molecular Media. Nat. Photonics 2022, 16, 570–574. [Google Scholar] [CrossRef]
- Dai, N.; Liu, S.; Ren, Z.; Cao, Y.; Ni, J.; Wang, D.; Yang, L.; Hu, Y.; Li, J.; Chu, J.; et al. Robust Helical Dichroism on Microadditively Manufactured Copper Helices via Photonic Orbital Angular Momentum. ACS Nano 2023, 17, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Porfirev, A.; Khonina, S.; Kuchmizhak, A. Light–matter interaction empowered by orbital angular momentum: Control of matter at the micro- and nanoscale. Prog. Quantum Electron. 2023, 88, 100459. [Google Scholar] [CrossRef]
- Forbes, K.A.; Andrews, D.L. Orbital angular momentum of twisted light: Chirality and optical activity. J. Phys. Photonics 2021, 3, 022007. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital Angular Momentum: Origins, Behavior and Applications. Adv. Opt. Photon 2011, 3, 161. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Rodríguez-Fortuño, F.J.; Nori, F.; Zayats, A.V. Spin–Orbit Interactions of Light. Nat. Photon 2015, 9, 796–808. [Google Scholar] [CrossRef]
- Brullot, W.; Vanbel, M.K.; Swusten, T.; Verbiest, T. Resolving Enantiomers Using the Optical Angular Momentum of Twisted Light. Sci. Adv. 2016, 2, e1501349. [Google Scholar] [CrossRef]
- Kerber, R.M.; Fitzgerald, J.M.; Xiao, X.; Oh, S.S.; Maier, S.A.; Giannini, V.; Reiter, D.E. Interaction of an Archimedean Spiral Structure with Orbital Angular Momentum Light. New J. Phys. 2018, 20, 095005. [Google Scholar] [CrossRef]
- Kerber, R.M.; Fitzgerald, J.M.; Reiter, D.E.; Oh, S.S.; Hess, O. Reading the Orbital Angular Momentum of Light Using Plasmonic Noantennas. ACS Photonics 2017, 4, 891–896. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, G.; Bian, W.; Dong, B.; Fang, Y. Orbital Angular Momentum Dichroism Caused by the Interaction of Electric and Magnetic Dipole Moments and the Geometrical Asymmetry of Chiral Metal Nanoparticles. Phys. Rev. A 2020, 102, 033525. [Google Scholar] [CrossRef]
- Forbes, K.A.; Jones, G.A. Optical vortex dichroism in chiral particles. Phys. Rev. A 2021, 103, 053515. [Google Scholar] [CrossRef]
- Hu, H.; Gan, Q.; Zhan, Q. Generation of a Nondiffracting Superchiral Optical Needle for Circular Dichroism Imaging of Sparse Subdiffraction Objects. Phys. Rev. Lett. 2019, 122, 223901. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Liu, S.; Tao, Y.; Wang, X.; Ni, J.; Wang, C.; Zheng, X.; Li, J.; Hu, Y.; Wu, D.; et al. Photonic Orbital Angular Momentum Dichroism on Three-Dimensional Chiral Oligomers. ACS Photonics 2023, 10, 1873–1881. [Google Scholar] [CrossRef]
- Ni, J.; Liu, S.; Wu, D.; Qiu, C.-W. Gigantic vortical differential scattering as a monochromatic probe for multiscale chiral structures. Proc. Natl. Acad. Sci. USA 2021, 118, e2020055118. [Google Scholar] [CrossRef]
- Palik, E.D. (Ed.) Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital Angular Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Peng, K.; Li, Z.-Y.; Liang, W. Giant Vortex Dichroism in Simplified-Chiral-Double-Elliptical Metamaterials. Nanomaterials 2025, 15, 189. https://doi.org/10.3390/nano15030189
Luo S, Peng K, Li Z-Y, Liang W. Giant Vortex Dichroism in Simplified-Chiral-Double-Elliptical Metamaterials. Nanomaterials. 2025; 15(3):189. https://doi.org/10.3390/nano15030189
Chicago/Turabian StyleLuo, Shiqi, Kangzhun Peng, Zhi-Yuan Li, and Wenyao Liang. 2025. "Giant Vortex Dichroism in Simplified-Chiral-Double-Elliptical Metamaterials" Nanomaterials 15, no. 3: 189. https://doi.org/10.3390/nano15030189
APA StyleLuo, S., Peng, K., Li, Z.-Y., & Liang, W. (2025). Giant Vortex Dichroism in Simplified-Chiral-Double-Elliptical Metamaterials. Nanomaterials, 15(3), 189. https://doi.org/10.3390/nano15030189