TiO2-Nanobelt-Enhanced, Phosphorescent, Organic Light-Emitting Diodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological and Optical Properties
2.2. Hole-Only Device and Hole Mobility Calculation
2.3. Device Fabrication
2.4. Electroluminescent Properties
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miao, W.C.; Hsiao, F.H.; Sheng, Y.; Lee, T.Y.; Hong, Y.H.; Tsai, C.W.; Chen, H.L.; Liu, Z.; Lin, C.L.; Chung, R.J.; et al. Microdisplays: Mini-LED, Micro-OLED, and Micro-LED. Adv. Opt. Mater. 2024, 12, 2300112. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Yan, H.; Ye, F.; Niu, F.; Zhang, B.; Wang, G.; Li, G.; Zeng, P. Nearultraviolet emitters based on carbazole-imidazole for highly efficient solutionprocessed organic light-emitting diodes. Chem. Eng. J. 2023, 451, 138881. [Google Scholar] [CrossRef]
- Park, C.H.; Kang, S.W.; Jung, S.G.; Lee, D.J.; Park, Y.W.; Ju, B.K. Enhanced light extraction efficiency and viewing angle characteristics of microcavity OLEDs by using a diffusion layer. Sci. Rep. 2021, 11, 3430. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.; Kant, C.; Raj, A.; Lin, H.C.; Katiyar, M. Evaluation of encapsulation strategies for solution-processed flexible organic light-emitting diodes. Mater. Chem. Phys. 2022, 292, 126808. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Rahdar, A. Graphene-Based Polymer Composites for Flexible Electronic Applications. Micromachines 2022, 13, 1123. [Google Scholar] [CrossRef]
- Will, P.A.; Reineke, S. Organic light-emitting diodes. In Handbook of Organic Materials for Electronic and Photonic Devices, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 695–726. [Google Scholar]
- Mir, S.H.; Nagahara, L.A.; Thundat, T.; Mokarian-Tabari, P.; Furukawa, H.; Khosla, A. Review—Organic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies. J. Electrochem. Soc. 2018, 165, B3137–B3156. [Google Scholar] [CrossRef]
- Li, D.; Yu, J. AIEgens-Functionalized Inorganic-Organic Hybrid Materials: Fabrications and Applications. Small 2016, 12, 6478–6494. [Google Scholar] [CrossRef]
- Ravikumar, K.; Dangate, M.S. Advancements in Stretchable Organic Optoelectronic Devices and Flexible Transparent Conducting Electrodes: Current Progress and Future Prospects. Heliyon 2024, 10, e33002. [Google Scholar] [CrossRef]
- Park, D.; Kang, S.; Ryoo, C.H.; Jhun, B.H.; Jung, S.; Na Le, T.; Suh, M.C.; Lee, J.; Jun, M.E.; Chu, C.; et al. High-performance blue OLED using multiresonance thermally activated delayed fluorescence host materials containing silicon atoms. Nat. Commun. 2023, 14, 5589. [Google Scholar] [CrossRef]
- Chiang, C.-J.; Winscom, C.; Bull, S.; Monkman, A. Mechanical modeling of flexible OLED devices. Org. Electron. 2009, 10, 1268–1274. [Google Scholar] [CrossRef]
- Han, T.H.; Song, W.; Lee, T.W. Elucidating the crucial role of hole injection layer in degradation of organic light-emitting diodes. ACS Appl. Mater. Interfaces 2015, 7, 3117–3125. [Google Scholar] [CrossRef]
- Zhou, D.Y.; Siboni, H.Z.; Wang, Q.; Liao, L.S.; Aziz, H. The influence of charge injection from intermediate connectors on the performance of tandem organic light-emitting devices. J. Appl. Phys. 2014, 116, 223708. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, X.; So, F. Hole injection polymer effect on degradation of organic light-emitting diodes. Org. Electron. 2013, 14, 2518–2522. [Google Scholar] [CrossRef]
- Munshi, M.N.; Loganathan, N.; Chakaroun, M.; Racine, B.; Maret, L.; Fischer, A.P.A. High-speed OLED bandwidth optimization method based on Relative Intensity Noise measurements. Org. Electron. 2023, 123, 106935. [Google Scholar] [CrossRef]
- Gautam, P.; Shahnawaz, I.; Siddiqui, D.; Blazevicius, G.; Krucaite, D.; Tavgeniene, J.H.; Jou, S.G. Bifunctional Bicarbazole-Benzophenone-Based Twisted Donor–Acceptor–Donor Derivatives for Deep-Blue and Green OLEDs. Nanomaterials 2023, 13, 1408. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Miao, J.; Zhu, Y.; Ali, M.U.; Xu, T.; Zhao, L.; Zhang, D.; He, G.; Meng, H. Revealing the influence of hole injection material’s molecular orientation on OLED’s performance. Org. Electron. 2018, 59, 301–305. [Google Scholar] [CrossRef]
- Xing, X.; Wu, Z.; Sun, Y.; Liu, Y.; Dong, X.; Li, S.; Wang, W. The Optimization of Hole Injection Layer in Organic Light-Emitting Diodes. Nanomaterials 2024, 14, 161. [Google Scholar] [CrossRef]
- Abidin, N.A.Z.; Arith, F.; Noorasid, N.S.; Sarkawi, H.; Mustafa, A.N.; Safie, N.E.; Shah, A.M.; Azam, M.A.; Chelvanathan, P.; Amin, N. Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells. RSC Adv. 2023, 13, 33797–33819. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, H.; Abdiryim, T.; Jamal, R.; Kadir, A.; Helil, Z.; Liu, H. Ultraviolet photodetectors based on TiO2 nanorod arrays/PEDOT-type conducting polymers. Opt. Mater. 2021, 122, 111805. [Google Scholar] [CrossRef]
- Ong, G.L.; Ong, T.S.; Yap, S.L.; Liaw, D.J.; Tou, T.Y.; Yap, S.S.; Nee, C.H. A brief review of nanoparticles-doped PEDOT:PSS nanocomposite for OLED and OPV. Nanotechnol. Rev. 2022, 11, 1870–1889. [Google Scholar] [CrossRef]
- Deskins, N.A.; Dupuis, M. Intrinsic Hole Migration Rates in TiO2 from Density Functional Theory. J. Phys. Chem. C 2009, 113, 346–358. [Google Scholar] [CrossRef]
- Carey, J.J.; Quirk, J.A.; McKenna, K.P. Hole Polaron Migration in Bulk Phases of TiO2 Using Hybrid Density Functional Theory. J. Phys. Chem. C 2021, 125, 12441–12450. [Google Scholar] [CrossRef]
- Di Valentin, C.; Selloni, A. Bulk and Surface Polarons in Photoexcited Anatase TiO2. J. Phys. Chem. Lett. 2011, 2, 2223–2228. [Google Scholar] [CrossRef]
- Carey, J.J.; McKenna, K.P. Screening Doping Strategies To Mitigate Electron Trapping at Anatase TiO2 Surfaces. J. Phys. Chem. C 2019, 123, 22358–22367. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Umezawa, N.; Ma, R.; Sakai, N.; Ebina, Y.; Sano, K.; Liu, M.; Ishida, Y.; Aida, T.; Sasaki, T. Spontaneous Direct Band Gap, High Hole Mobility, and Huge Exciton Energy in Atomic-Thin TiO2 Nanosheet. Chem. Mater. 2018, 30, 6449–6457. [Google Scholar] [CrossRef]
- Hmar, J.J.L.; Majumder, T.; Roy, J.N.; Mondal, S.P. Electrical and photo electrochemical characteristics of flexible CdS nanocomposite/conducting polymer heterojunction. Mater. Sci. Semicond. Process. 2015, 40, 145–151. [Google Scholar] [CrossRef]
- Semaltianos, N.G.; Logothetidis, S.; Hastas, N.; Perrie, W.; Romani, S.; Potter, R.J.; Dearden, G.; Watkins, K.G.; French, P.; Sharp, M. Modification of the electrical properties of PEDOT:PSS by the incorporation of ZnO nanoparticles synthesized by laser ablation. Chem. Phy. Lett. 2010, 484, 283–289. [Google Scholar] [CrossRef]
- Gupta, N.; Grover, R.; Mehta, D.S.; Saxena, K. Effect of CdSe/ZnS quantum dots on color purity and electrical properties of polyfluorene based hybrid light emitting diode. Org. Electron. 2016, 34, 276–283. [Google Scholar] [CrossRef]
- Reddy, N.K.; Devika, M.; Tu, C.W. High-quality ZnO nanorod based flexible devices for electronic and biological applications. RSC Adv. 2014, 4, 37563–37568. [Google Scholar] [CrossRef]
- Xavier, T.P.; Piraviperumal, M.; Kuo, C.-Y. Mani Govindasamy: TiO2 Hole Transport Layer Incorporated in a Thermally Evaporated Sb2Se3 Photoelectrode Exhibiting Low Onset Potential for Photoelectrochemical Applications. Energy Fuels 2024, 38, 16936–16948. [Google Scholar] [CrossRef]
- Gupta, N.; Grover, R.; Mehta, D.S.; Saxena, K. Efficiency enhancement in blue organic light emitting diodes with a composite hole transport layer based on poly(ethylenedioxythiophene):poly(styrenesulfonate) doped with TiO2 nanoparticles. Displays 2015, 39, 104–108. [Google Scholar] [CrossRef]
- Gautam, P.; Gupta, S.; Siddiqui, I.; Lin, W.-Z.; Sharma, D.; Ranjan, A.; Tai, N.-H.; Lu, M.-Y.; Jou, J.-H. 0, 1, 2, and 3-Dimensional zinc oxides enabling high-efficiency OLEDs. Chem. Eng. J. 2024, 495, 153220. [Google Scholar] [CrossRef]
- Luttrell, T.; Halpegamage, S.; Tao, J.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 4043. [Google Scholar] [CrossRef]
- Abbasi, S. Photocatalytic activity study of coated anatase-rutile titania nanoparticles with nanocrystalline tin dioxide based on the statistical analysis. Environ. Monit. Assess. 2019, 191, 206. [Google Scholar] [CrossRef] [PubMed]
- Georgiopoulou, Z.; Verykios, A.; Ladomenou, K.; Maskanaki, K.; Chatzigiannakis, G.; Armadorou, K.-K.; Palilis, L.C.; Chroneos, A.; Evangelou, E.K.; Gardelis, S.; et al. Carbon Nanodots as Electron Transport Materials in Organic Light Emitting Diodes and Solar Cells. Nanomaterials 2023, 13, 169. [Google Scholar] [CrossRef] [PubMed]
- Jeong, K.W.; Kim, H.S.; Yi, G.R.; Kim, C.K. Enhancing the electroluminescence of OLEDs by using ZnO nanoparticle electron transport layers that exhibit the Auger electron effect. Mol. Cryst. Liq. Cryst. 2018, 663, 61–70. [Google Scholar] [CrossRef]
- Li, W.; Wu, X.; Liu, G.; Li, Y.; Wu, L.; Fu, B.; Wang, W.; Zhang, D.; Zhao, J. Enhanced electron transportation of PF-NR2 cathode interface by gold nanoparticles. Nanoscale Res. Lett. 2019, 14, 261. [Google Scholar] [CrossRef]
- Sun, H.; Chen, Y.; Zhu, L.; Guo, Q.; Yang, D.; Chen, J.; Ma, D. Realization of Optimal Interconnector for Tandem Organic Light-Emitting Diodes with Record Efficiency. Adv. Electron. Mater. 2015, 1, 1500176. [Google Scholar] [CrossRef]
- Chun, J.Y.; Han, J.W.; Kim, T.W.; Seo, D.S. Enhancement of organic light-emitting diodes efficiency using carbon nanotube doped hole-injection layer on the Aldoped ZnO anode. ECS Solid State Lett. 2012, 1, R13–R15. [Google Scholar] [CrossRef]
- Wang, G.F.; Tao, X.M.; Wang, R.X. Fabrication and characterization of OLEDs using PEDOT:PSS and MWCNT nanocomposites. Compos. Sci. Technol. 2008, 68, 2837–2841. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhao, Y.; Zuo, Y.; Chai, J.; Chen, Z.; Wong, L.M.; Bao, T.; Wang, S.; Jin, Y.J.; Yang, M. Incorporating Nitrogen Atoms at TiO2 Lattice Sites for Improved Transparency and Visible-Light Photocatalytic Activity. J. Phys. Chem. C 2023, 127, 15271–15277. [Google Scholar] [CrossRef]
- Haryński, Ł.; Grochowska, K.; Karczewski, J.; Ryl, J.; Siuzdak, K. Scalable Route toward Superior Photoresponse of UV-Laser-Treated TiO2 Nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 3225–3235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, C.; Xu, R.; Yin, B.; Chen, Y.; Zhang, X.; Gao, F.; Ruan, S. The effect of self-depleting in UV photodetector based on simultaneously fabricated TiO2/NiO pn heterojunction and Ni/Au composite electrode. Nanotechnology 2017, 28, 365505. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Wu, W. Nanoscale Pumping Effect of Perovskite via Supported Bilayer Electron Transport Layer for Efficient Printable Mesoscopic Solar Cells. Energy Technol. 2024, 12, 2301243. [Google Scholar] [CrossRef]
- Shihabudeen, P.K.; Gupta, S.; Notash, M.Y.; Sardroodi, J.J.; Chiu, S.W.; Tai, N.H.; Tang, K.T. Chemiresistive room temperature NO2 sensor based on nitrogen doped zinc oxide nanowires. Sens. Actuators B Chem. 2023, 394, 134438. [Google Scholar] [CrossRef]
- Maheu, C.; Cardenas, L.; Puzenat, E.; Afanasiev, P.; Geantet, C. UPS and UV spectroscopies combined to position the energy levels of TiO2 anatase and rutile nanopowders. Phys. Chem. Chem. Phys. 2018, 20, 25629–25637. [Google Scholar] [CrossRef]
- Hu, X.; Wang, H.; Wang, M.; Zang, Z. Interfacial defects passivation using fullerene-polymer mixing layer for planar-structure perovskite solar cells with negligible hysteresis. Sol. Energy 2020, 206, 816–825. [Google Scholar] [CrossRef]
- Li, W.; Lai, X.; Meng, F.; Li, G.; Wang, K.; Kyaw, A.K.K.; Sun, X.W. Efficient defect-passivation and charge-transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells. Sol. Energy Mater. Sol. Cells 2020, 211, 110527. [Google Scholar] [CrossRef]
- Pal, K.; Si, A.; El-Sayyad, G.S.; Elkodous, M.A.; Kumar, R.; El-Batal, A.I.; Kralj, S.; Thomas, S. Cutting edge development on graphene derivatives modified by liquid crystal and CdS/TiO2 hybrid matrix: Optoelectronics and biotechnological aspects. Crit. Rev. Solid State Mater. Sci. 2021, 46, 385–449. [Google Scholar] [CrossRef]
- Gurudevi, P.; Venkateswari, P.; Sivakumar, T.; Vadivel, S. Construction of TiO2/PEDOT: PSS hybrid thin films for organic solar cell: Design, fabrication, characterization, and investigation. J. Mater. Sci. Mater. Electron. 2023, 34, 2032. [Google Scholar] [CrossRef]
- Kar, S.; Jamaludin, N.F.; Yantara, N.; Mhaisalkar, S.G.; Leong, W.L. Recent advancements and perspectives on light management and high performance in perovskite light-emitting diodes. Nanophotonics 2021, 10, 2103–2143. [Google Scholar] [CrossRef]
- Mei, J.; Leung, N.L.; Kwok, R.T.; Lam, J.W.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Xiao, S.; Wu, Y.; Li, M.; Tong, H.; Shi, H.; Ma, D.; Tang, B.Z. Molecular engineering of blue diphenylsulfone-based emitter with aggregation-enhanced emission and thermally activated delayed fluorescence characteristics: Impairing intermolecular electron-exchange interactions using steric hindrance. Chem. Eng. J. 2023, 452, 138957. [Google Scholar] [CrossRef]
- Cui, X.; Ruan, Q.; Zhuo, X.; Xia, X.; Hu, J.; Fu, R.; Li, Y.; Wang, J.; Xu, H. Photothermal nanomaterials: A powerful light-to-heat converter. Chem. Rev. 2023, 123, 6891–6952. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, M.; Li, Z.; Wang, X.; Kang, X.; Ying, L. Efficient and stable organic solar cells enabled by incorporation of titanium dioxide doped PEDOT:PSS as hole transport layer. Prog. Org. Coat. 2023, 183, 107819. [Google Scholar] [CrossRef]
- Gupta, N.; Grover, R.; Mehta, D.S.; Saxena, K. A simple technique for the fabrication of zinc oxide-PEDOT:PSS nanocomposite thin film for OLED application. Synth. Met. 2016, 221, 261–267. [Google Scholar] [CrossRef]
No. | Sample | μ (cm2/V·s) |
---|---|---|
1. | PEDOT/PSS | 4.61 × 10−4 |
2. | PEDOT/PSS +5% TiO2 | 8.23 × 10−4 |
3. | PEDOT/PSS +10% TiO2 | 7.62 × 10−4 |
4. | PEDOT/PSS +15% TiO2 | 7.44 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenka, S.; Gupta, S.; Rehman, B.; Dubey, D.K.; Wang, H.-M.; Sharma, A.; Jayakumar, J.; Wang, C.-W.; Tai, N.-H.; Grigalevicius, S.; et al. TiO2-Nanobelt-Enhanced, Phosphorescent, Organic Light-Emitting Diodes. Nanomaterials 2025, 15, 199. https://doi.org/10.3390/nano15030199
Lenka S, Gupta S, Rehman B, Dubey DK, Wang H-M, Sharma A, Jayakumar J, Wang C-W, Tai N-H, Grigalevicius S, et al. TiO2-Nanobelt-Enhanced, Phosphorescent, Organic Light-Emitting Diodes. Nanomaterials. 2025; 15(3):199. https://doi.org/10.3390/nano15030199
Chicago/Turabian StyleLenka, Sushanta, Shivam Gupta, Bushra Rehman, Deepak Kumar Dubey, Hsuan-Min Wang, Ankit Sharma, Jayachandran Jayakumar, Ching-Wu Wang, Nyan-Hwa Tai, Saulius Grigalevicius, and et al. 2025. "TiO2-Nanobelt-Enhanced, Phosphorescent, Organic Light-Emitting Diodes" Nanomaterials 15, no. 3: 199. https://doi.org/10.3390/nano15030199
APA StyleLenka, S., Gupta, S., Rehman, B., Dubey, D. K., Wang, H.-M., Sharma, A., Jayakumar, J., Wang, C.-W., Tai, N.-H., Grigalevicius, S., & Jou, J.-H. (2025). TiO2-Nanobelt-Enhanced, Phosphorescent, Organic Light-Emitting Diodes. Nanomaterials, 15(3), 199. https://doi.org/10.3390/nano15030199