Preparation and Performance of Nickel-Doped LaSrCoO3-SrCO3 Composite Materials for Alkaline Oxygen Evolution in Water Splitting
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of La0.5Sr0.5Co1−xNixO3−δ Using the Sol-Gel Method
2.2. Preparation of La0.5Sr0.5Co1−xNixO3−δ by the Hydrothermal Method
2.3. Physical Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Materials Characterization
3.2. XPS Analysis of La0.5Sr0.5Co0.8Ni0.2O3−δ by the Sol-Gel Method
3.3. Electrochemical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Zhang, X.; Zhao, Y. Metal-organic framework-based hybrids with photon upconversion. Chem. Soc. Rev. 2024, 54, 152–177. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.; Hu, Q.; Wang, B.; Lei, X.; You, J.; Guo, R. The latest advances in the deep reconstruction of pre-catalysts for the oxygen evolution reaction. J. Alloys Compd. 2025, 1010, 177225. [Google Scholar] [CrossRef]
- Zhu, S.; Song, L.; Xu, Z.; Chen, F.; Tao, H.; Tang, X.; Wang, Y. Theoretical and experimental aspects of electrocatalysts for oxygen evolution reaction. Chemistry 2024, 30, e202303672. [Google Scholar] [CrossRef]
- Xie, X.; Du, L.; Yan, L.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Oxygen evolution reaction in alkaline environment: Material challenges and solutions. Adv. Funct. Mater. 2022, 32, 2110036. [Google Scholar] [CrossRef]
- Liang, X.; Zhang, K.-X.; Shen, Y.-C.; Sun, K.; Shi, L.; Chen, H.; Zheng, K.-Y.; Zou, X.-X. Perovskite-type water oxidation electrocatalysts. J. Electrochem. 2022, 28, 2214004. [Google Scholar]
- Hwang, J.; Rao, R.R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756. [Google Scholar]
- Zhao, Y.-N.; Liu, C.; Xu, S.; Min, S.; Wang, W.; Mitsuzaki, N.; Chen, Z. A/B-site management strategy to boost electrocatalytic overall water splitting on perovskite oxides in an alkaline medium. Inorg. Chem. 2023, 62, 12590–12599. [Google Scholar] [CrossRef]
- Suntivich, J.; May, K.J.; Gasteiger, H.A.; Goodenough, J.B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385. [Google Scholar] [CrossRef]
- Flores-Lasluisa, J.X.; Huerta, F.; Cazorla-Amorós, D.; Morallón, E. LaNi1-xCoxO3 perovskites for application in electrochemical reactions involving molecular oxygen. Energy 2023, 273, 127256. [Google Scholar] [CrossRef]
- Lee, D.U.; Li, J.; Park, M.G.; Seo, M.H.; Ahn, W.; Stadelmann, I.; Ricardez-Sandoval, L.; Chen, Z. Self-assembly of spinel nanocrystals into mesoporous spheres as bifunctionally active oxygen reduction and evolution electrocatalysts. ChemSusChem 2017, 10, 2258–2266. [Google Scholar] [CrossRef]
- Soltani, M.; Amin, H.M.A.; Cebe, A.; Ayata, S.; Baltruschat, H. Metal-supported perovskite as an efficient bifunctional electrocatalyst for oxygen reduction and evolution: Substrate effect. J. Electrochem. Soc. 2021, 168, 034504. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Zan, L.; Baltruschat, H. Boosting the bifunctional catalytic activity of Co3O4 on silver and nickel substrates for the alkaline oxygen evolution and reduction reactions. Surf. Interfaces 2024, 54, 105218. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Baltruschat, H.; Wittmaier, D.; Friedrich, K.A. A highly efficient bifunctional catalyst for alkaline air-electrodes based on a Ag and Co3O4 hybrid: RRDE and online DEMS insights. Electrochim. Acta 2015, 151, 332–339. [Google Scholar] [CrossRef]
- Wei, Y.; Hu, Y.; Da, P.; Weng, Z.; Xi, P.; Yan, C.-H. Triggered lattice-oxygen oxidation with active-site generation and self-termination of surface reconstruction during water oxidation. Proc. Natl. Acad. Sci. USA 2023, 120, e2312224120. [Google Scholar] [CrossRef] [PubMed]
- Hua, B.; Li, M.; Pang, W.; Tang, W.; Zhao, S.; Jin, Z.; Zeng, Y.; Amirkhiz, B.S.; Luo, J.-L. Activating p-blocking centers in perovskite for efficient water splitting. Chem 2018, 4, 2902–2916. [Google Scholar] [CrossRef]
- Mefford, J.T.; Rong, X.; Abakumov, A.M.; Hardin, W.G.; Dai, S.; Kolpak, A.M.; Johnston, K.P.; Stevenson, K.J. Water electrolysis on La1-xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 2016, 7, 11053. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, W.; Sunarso, J.; Zhong, Y.; Shao, Z. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Adv. Funct. Mater. 2016, 26, 5862–5872. [Google Scholar] [CrossRef]
- Luo, Q.; Lin, D.; Zhan, W.; Zhang, W.; Tang, L.; Luo, J.; Gao, Z.; Jiang, P.; Wang, M.; Hao, L.; et al. Hexagonal perovskite Ba0.9Sr0.1Co0.8Fe0.1Ir0.1O3−δ as an efficient electrocatalyst towards the oxygen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 7149–7158. [Google Scholar] [CrossRef]
- Cai, W.; Zhou, M.; Cao, D.; Yan, X.; Li, Q.; Lü, S.; Mao, C.; Li, Y.; Xie, Y.; Zhao, C.; et al. Ni-doped A-site-deficient La0.7Sr0.3Cr0.5Mn0.5O3−δ perovskite as anode of direct carbon solid oxide fuel cells. Int. J. Hydrogen Energy 2020, 45, 21873–21880. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, Z.; Huang, L.; Guo, Y.; Zhai, Y.; Dong, S. Hydrothermal synthesis of polydopamine-functionalized cobalt-doped lanthanum nickelate perovskite nanorods for efficient water oxidation in alkaline solution. Nanoscale 2019, 11, 19579–19585. [Google Scholar] [CrossRef]
- Sung, M.-C.; Kim, C.H.; Hwang, B.; Kim, D.-W. Rationalizing the catalytic surface area of oxygen vacancy-enriched layered perovskite LaSrCrO4 nanowires on oxygen electrocatalyst for enhanced performance of LiO2 batteries. Carbon Energy 2024, 6, e550. [Google Scholar] [CrossRef]
- Cao, C.; Shang, C.; Li, X.; Wang, Y.; Liu, C.; Wang, X.; Zhou, S.; Zeng, J. Dimensionality control of electrocatalytic activity in perovskite nickelates. Nano Lett. 2020, 20, 2837–2842. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Chang, X.; Zhang, M.; Mu, J. Surface reconstruction of La0.6Sr0.4Co0.8Ni0.2O3−δ perovskite nanofibers for oxygen evolution reaction. Ceram. Int. 2024, 50, 13014–13021. [Google Scholar] [CrossRef]
- Roy, S.; Yoshida, T.; Kumar, A.; Yusuf, S.M.; Chakraborty, C.; Roy, S. Tailoring Co site reactivity via Sr and Ni doping in LaCoO3 for enhanced water splitting performance. Catal. Today 2024, 441, 114885. [Google Scholar] [CrossRef]
- Rendón-Angeles, J.C.; Yanagisawa, K.; Matamoros-Veloza, Z.; Pech-Canul, M.I.; Mendez-Nonell, J.; la Torre, S.D. Hydrothermal synthesis of perovskite strontium doped lanthanum chromite fine powders and its sintering. J. Alloys Compd. 2010, 504, 251–256. [Google Scholar] [CrossRef]
- Thanh, T.D.; Chuong, N.D.; Balamurugan, J.; Van Hien, H.; Kim, N.H.; Lee, J.H. Porous hollow-structured LaNiO3 stabilized N, S-Codoped graphene as an active electrocatalyst for oxygen reduction reaction. Small 2017, 13, 1701884. [Google Scholar] [CrossRef]
- Omari, E.; Makhloufi, S.; Omari, M. Preparation by sol-gel method and characterization of Co-doped LaNiO3 perovskite. J. Inorg. Organomet. Polym. 2017, 27, 1466–1472. [Google Scholar]
- Liang, D.; Huang, H.; Liu, J.; Wang, H. Preparation and modification of La0.4Sr0.6Co1-xNixO3 (x = 0-0.8) perovskite oxide for bi-functional catalysis in alkaline medium. Inorg. Chem. Commun. 2021, 127, 108533. [Google Scholar] [CrossRef]
- Ramana, C.V.; Vemuri, R.S.; Kaichev, V.V.; Kochubey, V.A.; Saraev, A.A.; Atuchin, V.V. X-ray photoelectron spectroscopy depth profiling of La2O3/Si thin films deposited by reactive magnetron sputtering. ACS Appl. Mater. Interfaces 2011, 3, 4370–4373. [Google Scholar] [CrossRef]
- Komai, S.; Hirano, M.; Ohtsu, N. Spectral analysis of Sr 3d XPS spectrum in Sr-containing hydroxyapatite. Surf. Interface Anal. 2020, 52, 823–828. [Google Scholar] [CrossRef]
- Yang, J.; Liu, H.; Martens, W.N.; Frost, R.L. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 2010, 114, 111–119. [Google Scholar] [CrossRef]
- Zhao, Q.; Fang, C.; Tie, F.; Luo, W.; Peng, Y.; Huang, F.; Ku, Z.; Cheng, Y.-B. Regulating the Ni3+/Ni2+ ratio of NiOx by plasma treatment for fully vacuum-deposited perovskite solar cells. Mater. Sci. Semicond. Process. 2022, 148, 106839. [Google Scholar] [CrossRef]
- Wang, J.; Mueller, D.N.; Crumlin, E.J. Recommended strategies for quantifying oxygen vacancies with X-ray photoelectron spectroscopy. J. Eur. Ceram. Soc. 2024, 44, 116709. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Bondue, C.J.; Eswara, S.; Kaiser, U.; Baltruschat, H. A carbon-free Ag-Co3O4 composite as a bifunctional catalyst for oxygen reduction and evolution: Spectroscopic, microscopic and electrochemical characterization. Electrocatalysis 2017, 8, 540–553. [Google Scholar] [CrossRef]
- Hu, Z.; Yan, Q.; Wang, Y. Dynamic surface reconstruction of perovskite oxides in oxygen evolution reaction and its impacts on catalysis: A critical review. Mater. Today Chem. 2023, 34, 101800. [Google Scholar] [CrossRef]
- Dong, F.; Li, L.; Kong, Z.; Xu, X.; Zhang, Y.; Gao, Z.; Dongyang, B.; Ni, M.; Liu, Q.; Lin, Z. Materials engineering in perovskite for optimized oxygen evolution electrocatalysis in alkaline condition. Small 2020, 17, 2006638. [Google Scholar] [CrossRef]
- Chen, L.; Yan, C.; Zhang, F.; Chi, J.; Xiong, W.; Liu, P.; Hao, F. Modulated oxygen mobility of perovskite oxides for efficient redox oxidative cracking of cycloalkane to light olefins. Chem. Eng. J. 2023, 477, 146894. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lu, X.; Guo, Y.; Zhao, H.; Tang, X. A-site doped ruthenium perovskite bifunctional electrocatalysts with high OER and ORR activity. J. Alloys Compd. 2022, 920, 165770. [Google Scholar] [CrossRef]
- Li, S.-F.; Zheng, J.; Hu, L.; Ma, Y.; Yan, D. Facile surface defect engineering on perovskite oxides for enhanced OER performance. Dalton Trans. 2023, 52, 4207–4213. [Google Scholar] [CrossRef]
- Cao, J.; Riaz, S.; Qi, Z.; Zhao, K.; Qi, Y.; Wei, P.; Xie, Y. Superhydrophilic self-supported perovskite oxides for oxygen evolution reactions in oilfield wastewater. Catal. Lett. 2024, 154, 5350–5358. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zong, B.; Pan, X.; Zhang, L.; Wei, B.; Feng, X.; Guo, M.; Cao, D.; Ye, F. Preparation and Performance of Nickel-Doped LaSrCoO3-SrCO3 Composite Materials for Alkaline Oxygen Evolution in Water Splitting. Nanomaterials 2025, 15, 210. https://doi.org/10.3390/nano15030210
Zong B, Pan X, Zhang L, Wei B, Feng X, Guo M, Cao D, Ye F. Preparation and Performance of Nickel-Doped LaSrCoO3-SrCO3 Composite Materials for Alkaline Oxygen Evolution in Water Splitting. Nanomaterials. 2025; 15(3):210. https://doi.org/10.3390/nano15030210
Chicago/Turabian StyleZong, Bangfeng, Xiaojun Pan, Lifang Zhang, Bo Wei, Xiangxiong Feng, Miao Guo, Duanhao Cao, and Feng Ye. 2025. "Preparation and Performance of Nickel-Doped LaSrCoO3-SrCO3 Composite Materials for Alkaline Oxygen Evolution in Water Splitting" Nanomaterials 15, no. 3: 210. https://doi.org/10.3390/nano15030210
APA StyleZong, B., Pan, X., Zhang, L., Wei, B., Feng, X., Guo, M., Cao, D., & Ye, F. (2025). Preparation and Performance of Nickel-Doped LaSrCoO3-SrCO3 Composite Materials for Alkaline Oxygen Evolution in Water Splitting. Nanomaterials, 15(3), 210. https://doi.org/10.3390/nano15030210